Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 63(22): 10194-10206, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767516

RESUMEN

We report details on the synthesis and properties of barium praseodymium tungstate, Ba2PrWO6, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic I2/m, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium in both 3+ and 4+ charge states. The former (Pr3+) disappeared after exposure to UV light at RT. Photoluminescence studies of Pr3+ revealed that Ba2PrWO6 is an insulator with a band gap exceeding 4.93 eV. Pressure-dependent Raman spectroscopy excluded the possibility of a phase transition up to 20 GPa; however, measurements between 8 and 873 K signified that there might be a change toward the lower symmetry SG below 200 K. Electron paramagnetic resonance spectra revealed the presence of interstitial oxygen which acts as a deep electron trap.

2.
Polim Med ; 54(1): 35-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38230844

RESUMEN

BACKGROUND: Microand nanoplastics pollution can cause substantial damage to ecosystems. Since scientists have focused mainly on their impact on aquatic environments, less attention has been paid to the accumulation of polymer particles in terrestrial organisms. OBJECTIVES: We checked if submicron (<5 mm) polystyrene (PS) particles, which can accumulate in living organisms, lead to changes in the physicochemical properties of mammalian cell membranes. MATERIAL AND METHODS: The influence of submicron PS particles on the properties of rat-derived L6 myocytes and H9c2 cardiomyocytes was analyzed. Non-functionalized and amine-functionalized PS particles of 100 nm and 200 nm in diameter were used. The MTT assay was performed to evaluate the viability of the polymers-treated cells. The effect of short (6 h) and prolonged (48 h) incubation with different concentrations of PS particles on the cell's zeta (ζ) potential was examined with the electrophoretic light scattering technique (ELS). Polystyrene particles' physicochemical characteristics (size and stability) were performed using dynamic light scattering (DLS) and electrophoretic light scattering methods. RESULTS: The results show that submicron PS particles affect cell viability and cause changes in the physiochemical parameters of rat cell membranes. Differences were observed depending on the origin of the cells. We observed doseand time-dependent alterations in the studied parameters after submicron PS particle incubation in L6 myotubes and H9c2 cardiomyocytes. CONCLUSIONS: The size and modification of PS particle surfaces determine the extent to which they affect the analyzed properties of rat cardiomyocytes and myocytes membranes.


Asunto(s)
Supervivencia Celular , Miocitos Cardíacos , Tamaño de la Partícula , Poliestirenos , Animales , Poliestirenos/toxicidad , Poliestirenos/química , Ratas , Supervivencia Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Línea Celular , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Nanopartículas
3.
ACS Omega ; 9(8): 9835-9846, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434883

RESUMEN

The impact of different synthesis parameters, such as thickness, postsynthesis annealing temperature, and oxygen gas flow rate, upon the electronic structure is discussed in detail in the present experimental investigation. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectroscopy techniques are used to evaluate the surface electronic properties along with the presence and stability of the CdO2 surface oxide in CdxZn1-xO (x = 0.4) composite thin films. The thin films were synthesized with varying thicknesses using a Cd0.4Zn0.6O (CZO) ceramic and Cd0.4Zn0.6 (CZ) metallic targets and oxygen gas flow rates during magnetron sputtering. The Zn L3,2 edge and O K edge XANES spectra are affected by the oxygen gas flow rate. For the zero rate, an increase in intensity is observed in the Zn L3,2 edge, and notable changes occur in the overall spectral features of the O K edge. In the films synthesized in the presence of oxygen, highly probable O 2p → antibonding Zn 3d electronic transitions decrease the probability of the Zn 2p1/2 → antibonding Zn 3d electronic transition by filling the vacant antibonding Zn 3d states, leading to the reduction in overall intensity in the Zn L3,2 edge. Scanning electron microscopy reveals grain growth with increasing annealing temperature. The annealing induces orbital hybridization, generating new electronic states with higher transition probabilities and intensity enhancement in both Zn L3,2 and O K edges. The presence of the CdO2 surface phase is confirmed by analyzing the Cd 3d5/2 and O 1s XPS core levels. The CdO2 surface phase is observed in the films synthesized using the CZO target for all thicknesses, while the CZ target is only observed for higher thicknesses. Further postsynthesis annealing treatment results in the disappearance of the CdO2 phase. The CdO2 surface phase can be controlled by varying the film thickness and postsynthesis annealing temperature.

4.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473631

RESUMEN

The formation of intrinsic point defects in the N-sublattice of semi-insulating Mg-doped GaN crystals grown by the ammonothermal method (SI AT GaN:Mg) was investigated for the first time. The grown-in defects produced by the displacement of nitrogen atoms were experimentally observed as deep traps revealed by the Laplace transform photoinduced transient spectroscopy in the compensated p-type crystals with the Mg concentrations of 6 × 1018 and 2 × 1019 cm-3 and resistivities of ~1011 Ωcm and ~106 Ωcm, respectively. In both kinds of materials, three closely located traps with activation energies of 430, 450, and 460 meV were revealed. The traps, whose concentrations in the stronger-doped material were found to be significantly higher, are assigned to the (3+/+) and (2+/+) transition levels of nitrogen vacancies as well as to the (2+/+) level of nitrogen split interstitials, respectively. In the material with the lower Mg concentration, a middle-gap trap with the activation energy of 1870 meV was found to be predominant. The results are confirmed and quantitatively described by temperature-dependent Hall effect measurements. The mechanism of nitrogen atom displacement due to the local strain field arising in SI AT GaN:Mg is proposed and the effect of the Mg concentration on the charge compensation is discussed.

5.
Energy Fuels ; 38(2): 1330-1336, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38264624

RESUMEN

MnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol-gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for water-splitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials' crystallographic structure and surface characteristics. The intrinsic activity of the MnCo1.5Fe0.5O4 was fine-tuned by altering the electronic structure by controlling the calcination temperature, and the highest activity was observed for the sample treated at 800 °C. A shift in the valence state of surface cations under oxidative conditions in an alkaline solution during the oxygen evolution reaction was detected through ex situ XAS measurements. Moreover, the influence of the experimental conditions on the electrocatalytic performance of the material, including the pH of the electrolyte and the temperature, was demonstrated.

6.
Adv Mater ; 36(18): e2309842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269958

RESUMEN

Cation doping is an effective strategy for improving the cyclability of layered oxide cathode materials through suppression of phase transitions in the high voltage region. In this study, Mg and Sc are chosen as dopants in P2-Na0.67Ni0.33Mn0.67O2, and both have found to positively impact the cycling stability, but influence the high voltage regime in different ways. Through a combination of synchrotron-based methods and theoretical calculations it is shown that it is more than just suppression of the P2 to O2 phase transition that is critical for promoting the favorable properties, and that the interplay between Ni and O activity is also a critical aspect that dictates the performance. With Mg doping, the Ni activity can be enhanced while simultaneously suppressing the O activity. This is surprising because it is in contrast to what has been reported in other Mn-based layered oxides where Mg is known to trigger oxygen redox. This contradiction is addressed by proposing a competing mechanism between Ni and Mg that impacts differences in O activity in Na0.67MgxNi0.33- xMn0.67O2 (x < 0 < 0.33). These findings provide a new direction in understanding the effects of cation doping on the electrochemical behavior of layered oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA