Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 17(5): 514-522, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27043414

RESUMEN

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Asunto(s)
ADN/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas de la Membrana/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Citosol/inmunología , Citosol/metabolismo , Citosol/virología , ADN/genética , ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Inmunización/métodos , Immunoblotting , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Ovalbúmina/genética , Ovalbúmina/inmunología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
2.
Haematologica ; 108(11): 2946-2958, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36951168

RESUMEN

Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.


Asunto(s)
Glucuronosiltransferasa , Leucemia Mieloide Aguda , Humanos , Decitabina/uso terapéutico , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/uso terapéutico , Ribavirina/uso terapéutico , Ribavirina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/uso terapéutico , Terapia Molecular Dirigida , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Citarabina , Uridina Difosfato/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
PLoS Pathog ; 14(8): e1007264, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30138450

RESUMEN

Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis.


Asunto(s)
Herpes Simple/patología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Proteínas Inmediatas-Precoces/genética , Neoplasias/virología , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Dominio Catalítico/efectos de los fármacos , Proteínas de Ciclo Celular , Células Cultivadas , Chlorocebus aethiops , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Herpes Simple/complicaciones , Herpes Simple/genética , Humanos , Proteínas Inmediatas-Precoces/deficiencia , Ratones , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/patología , Organismos Modificados Genéticamente , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/química , Ubiquitina-Proteína Ligasas/deficiencia , Células Vero
4.
J Biol Chem ; 290(26): 15996-6020, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25940091

RESUMEN

The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.


Asunto(s)
Autoantígenos/metabolismo , Regulación hacia Abajo , Glicoproteínas de Membrana/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Glicoproteínas de Membrana/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , ARN Largo no Codificante , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteína Reguladora Asociada a mTOR , Ribonucleoproteínas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
5.
Mutat Res ; 705(3): 217-27, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20667510

RESUMEN

Apurinic/apyrimidinic (AP) endonucleases are versatile DNA repair enzymes that possess a variety of nucleolytic activities, including endonuclease activity at AP sites, 3' phosphodiesterase activity that can remove a variety of ligation-blocking lesions from the 3' end of DNA, endonuclease activity on oxidative DNA lesions, and 3' to 5' exonuclease activity. There are two families of AP endonucleases, named for the bacterial counterparts endonuclease IV (EndoIV) and exonuclease III (ExoIII). While ExoIII family members are present in all kingdoms of life, EndoIV members exist in lower organisms but are curiously absent in plants, mammals and some other vertebrates. Here, we review recent research on these enzymes, focusing primarily on the EndoIV family. We address the role(s) of EndoIV members in DNA repair and discuss recent findings from each model organism in which the enzymes have been studied to date.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Secuencia de Aminoácidos , Animales , Disparidad de Par Base , Caenorhabditis elegans , ADN de Hongos/genética , ADN Mitocondrial/genética , Humanos , Datos de Secuencia Molecular , Nucleótidos/genética , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Xenopus/genética , Pez Cebra
6.
Oncotarget ; 8(31): 50542-50556, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881582

RESUMEN

Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.

7.
Nat Commun ; 6: 6410, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25817275

RESUMEN

In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.


Asunto(s)
Efecto Espectador/efectos de los fármacos , Citocinas/efectos de los fármacos , Interferón Tipo I/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Viroterapia Oncolítica , Virus Oncolíticos , ARN Mensajero/efectos de los fármacos , Infecciones por Rhabdoviridae/inmunología , Moduladores de Tubulina/farmacología , Albendazol/farmacología , Animales , Bencimidazoles/farmacología , Efecto Espectador/inmunología , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Colchicina/farmacología , Citocinas/inmunología , Células HT29 , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ratones , Nocodazol/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , Rhabdoviridae , Células Vero , Vinblastina/análogos & derivados , Vinblastina/farmacología , Vinorelbina
8.
Cell Metab ; 18(5): 698-711, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24206664

RESUMEN

mRNA translation is thought to be the most energy-consuming process in the cell. Translation and energy metabolism are dysregulated in a variety of diseases including cancer, diabetes, and heart disease. However, the mechanisms that coordinate translation and energy metabolism in mammals remain largely unknown. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates mRNA translation and other anabolic processes. We demonstrate that mTORC1 controls mitochondrial activity and biogenesis by selectively promoting translation of nucleus-encoded mitochondria-related mRNAs via inhibition of the eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Stimulating the translation of nucleus-encoded mitochondria-related mRNAs engenders an increase in ATP production capacity, a required energy source for translation. These findings establish a feed-forward loop that links mRNA translation to oxidative phosphorylation, thereby providing a key mechanism linking aberrant mTOR signaling to conditions of abnormal cellular energy metabolism such as neoplasia and insulin resistance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Recambio Mitocondrial , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Autofagia/genética , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Respiración de la Célula , ADN Mitocondrial/biosíntesis , Proteínas de Unión al ADN/metabolismo , Genoma Humano/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factores de Transcripción/metabolismo
9.
DNA Repair (Amst) ; 9(2): 169-76, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20036200

RESUMEN

We previously showed that Caenorhabditis elegans APN-1, the only metazoan apurinic/apyrimidinc (AP) endonuclease belonging to the endonuclease IV family, can functionally rescue the DNA repair defects of Saccharomyces cerevisiae mutants completely lacking AP endonuclease/3'-diesterase activities. While this complementation study provided the first evidence that APN-1 possesses the ability to act on DNA lesions that are processed by AP endonucleases/3'-diesterase activities, no former studies were conducted to examine its biological importance in vivo. Herein, we show that C. elegans knockdown for apn-1 by RNAi displayed phenotypes that are directly linked with a defect in maintaining the integrity of the genome. apn-1(RNAi) animals exhibited a 5-fold increase in the frequency of mutations at a gfp-lacZ reporter and showed sensitivities to DNA damaging agents such as methyl methane sulfonate and hydrogen peroxide that produce AP site lesions and strand breaks with blocked 3'-ends. The apn-1(RNAi) worms also displayed a delay in the division of the P1 blastomere, a defect that is consistent with the accumulation of unrepaired lesions. Longevity was only compromised, if the apn-1(RNAi) animals were challenged with the DNA damaging agents. We showed that apn-1(RNAi) knockdown suppressed formation of apoptotic corpses in the germline caused by an overburden of AP sites generated from uracil DNA glycosylase mediated removal of misincorporated uracil. Finally, we showed that depletion of APN-1 by RNAi partially rescued the lethality resulting from uracil misincorporation, suggesting that APN-1 is an important AP endonuclease for repair of misincorporated uracil.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Endodesoxirribonucleasas/metabolismo , Genoma de los Helmintos/genética , Inestabilidad Genómica/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de la radiación , Blastómeros/citología , Blastómeros/efectos de los fármacos , Blastómeros/efectos de la radiación , Caenorhabditis elegans/citología , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Genes Reporteros , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Proteínas Fluorescentes Verdes/metabolismo , Longevidad/efectos de los fármacos , Longevidad/efectos de la radiación , Metilmetanosulfonato/toxicidad , Mutación/genética , Interferencia de ARN/efectos de los fármacos , Rayos Ultravioleta , Uracilo/metabolismo , beta-Galactosidasa/metabolismo , terc-Butilhidroperóxido/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA