Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Struct Biol ; 213(2): 107714, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667636

RESUMEN

SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.


Asunto(s)
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Calmodulina/química , Pollos , Cromatografía en Gel , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Conformación Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Chemistry ; 27(45): 11707-11720, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34152657

RESUMEN

Human telomeric DNA with hundreds of repeats of the 5'-TTAGGG-3' motif plays a crucial role in several biological processes. It folds into G-quadruplex (G4) structures and features a pocket at the interface of two contiguous G4 blocks. Up to now no structural NMR and crystallographic data are available for ligands interacting with contiguous G4s. Naphthalene diimide monomers and dyads were investigated as ligands of a dimeric G4 of human telomeric DNA comparing the results with those of the model monomeric G4. Time-resolved fluorescence, circular dichroism, isothermal titration calorimetry and molecular modeling were used to elucidate binding features. Ligand fluorescence lifetime and induced circular dichroism unveiled occupancy of the binding site at the interface. Thermodynamic parameters confirmed the hypothesis as they remarkably change for the dyad complexes of the monomeric and dimeric telomeric G4. The bi-functional ligand structure of the dyads is a fundamental requisite for binding at the G4 interface as only the dyads engage in complexes with 1 : 1 stoichiometry, lodging in the pocket at the interface and establishing multiple interactions with the DNA skeleton. In the absence of NMR and crystallographic data, our study affords important proofs of binding at the interface pocket and clues on the role played by the ligand structure.


Asunto(s)
G-Cuádruplex , Dicroismo Circular , ADN , Humanos , Ligandos , Telómero
3.
J Biol Chem ; 294(19): 7601-7614, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30858174

RESUMEN

Activation of nickel enzymes requires specific accessory proteins organized in multiprotein complexes controlling metal transfer to the active site. Histidine-rich clusters are generally present in at least one of the metallochaperones involved in nickel delivery. The maturation of carbon monoxide dehydrogenase in the proteobacterium Rhodospirillum rubrum requires three accessory proteins, CooC, CooT, and CooJ, dedicated to nickel insertion into the active site, a distorted [NiFe3S4] cluster coordinated to an iron site. Previously, CooJ from R. rubrum (RrCooJ) has been described as a nickel chaperone with 16 histidines and 2 cysteines at its C terminus. Here, the X-ray structure of a truncated version of RrCooJ, combined with small-angle X-ray scattering data and a modeling study of the full-length protein, revealed a homodimer comprising a coiled coil with two independent and highly flexible His tails. Using isothermal calorimetry, we characterized several metal-binding sites (four per dimer) involving the His-rich motifs and having similar metal affinity (KD = 1.6 µm). Remarkably, biophysical approaches, site-directed mutagenesis, and X-ray crystallography uncovered an additional nickel-binding site at the dimer interface, which binds Ni(II) with an affinity of 380 nm Although RrCooJ was initially thought to be a unique protein, a proteome database search identified at least 46 bacterial CooJ homologs. These homologs all possess two spatially separated nickel-binding motifs: a variable C-terminal histidine tail and a strictly conserved H(W/F)X2HX3H motif, identified in this study, suggesting a dual function for CooJ both as a nickel chaperone and as a nickel storage protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Níquel/química , Multimerización de Proteína , Rhodospirillum rubrum/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Mutagénesis Sitio-Dirigida , Rhodospirillum rubrum/genética
4.
J Biol Inorg Chem ; 25(2): 187-198, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31853648

RESUMEN

Nickel ions are crucial components for the catalysis of biological reactions in prokaryotic organisms. As an uncontrolled nickel trafficking is toxic for living organisms, nickel-dependent bacteria have developed tightly regulated strategies to maintain the correct intracellular metal ion quota. These mechanisms require transcriptional regulator proteins that respond to nickel concentration, activating or repressing the expression of specific proteins related to Ni(II) metabolism. In Streptomyces griseus, a Gram-positive bacterium used for antibiotic production, SgSrnR and SgSrnQ regulate the nickel-dependent antagonistic expression of two superoxide dismutase (SOD) enzymes, a Ni-SOD and a FeZn-SOD. According to a previously proposed model, SgSrnR and SgSrnQ form a protein complex in which SgSrnR works as repressor, binding directly to the promoter of the gene coding for FeZn-SOD, while SgSrnQ is the Ni(II)-dependent co-repressor. The present work focuses on the determination of the biophysical and functional properties of SgSrnR. The protein was heterologously expressed and purified from Escherichia coli. The structural and metal-binding analysis, carried out by circular dichroism, light scattering, fluorescence and isothermal titration calorimetry, showed that the protein is a well-structured homodimer, able to bind nickel with moderate affinity. DNase I footprinting and ß-galactosidase gene reporter assays revealed that apo-SgSrnR is able to bind its DNA operator and activates a transcriptional response. The structural and functional properties of this protein are discussed relatively to its role as a Ni(II)-dependent sensor.


Asunto(s)
Níquel/metabolismo , Streptomyces griseus/química , Factores de Transcripción/metabolismo , Níquel/química , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/genética
5.
Molecules ; 25(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050145

RESUMEN

Enzymes have gained attention for their role in numerous disease states, calling for research for their efficient delivery. Loading enzymes into polymeric nanoparticles to improve biodistribution, stability, and targeting in vivo has led the field with promising results, but these enzymes still suffer from a degradation effect during the formulation process that leads to lower kinetics and specific activity leading to a loss of therapeutic potential. Stabilizers, such as bovine serum albumin (BSA), can be beneficial, but the knowledge and understanding of their interaction with enzymes are not fully elucidated. To this end, the interaction of BSA with a model enzyme B-Glu, part of the hydrolase class and linked to Gaucher disease, was analyzed. To quantify the natural interaction of beta-glucosidase (B-Glu,) and BSA in solution, isothermal titration calorimetry (ITC) analysis was performed. Afterwards, polymeric nanoparticles encapsulating these complexes were fully characterized, and the encapsulation efficiency, activity of the encapsulated enzyme, and release kinetics of the enzyme were compared. ITC results showed that a natural binding of 1:1 was seen between B-Glu and BSA. Complex concentrations did not affect nanoparticle characteristics which maintained a size between 250 and 350 nm, but increased loading capacity (from 6% to 30%), enzyme activity, and extended-release kinetics (from less than one day to six days) were observed for particles containing higher B-Glu:BSA ratios. These results highlight the importance of understanding enzyme:stabilizer interactions in various nanoparticle systems to improve not only enzyme activity but also biodistribution and release kinetics for improved therapeutic effects. These results will be critical to fully characterize and compare the effect of stabilizers, such as BSA with other, more relevant therapeutic enzymes for central nervous system (CNS) disease treatments.


Asunto(s)
Nanopartículas/química , Albúmina Sérica Bovina/química , Animales , Calorimetría , Estabilidad de Enzimas/fisiología , Nanomedicina
6.
Chemistry ; 25(67): 15351-15360, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31486181

RESUMEN

In Rhodospirillum rubrum, the maturation of carbon monoxide dehydrogenase (CODH) requires three nickel chaperones, namely RrCooC, RrCooT and RrCooJ. Recently, the biophysical characterisation of the RrCooT homodimer and the X-ray structure of its apo form revealed the existence of a solvent-exposed NiII -binding site at the dimer interface, involving the strictly conserved Cys2. Here, a multifaceted approach that used NMR and X-ray absorption spectroscopies, complemented with structural bio-modelling methodologies, was used to characterise the binding mode of NiII in RrCooT. This study suggests that NiII adopts a square-planar geometry through a N2 S2 coordinating environment that comprises the two thiolate and amidate groups of both Cys2 residues at the dimer interface. The existence of a diamagnetic mononuclear NiII centre with bis-amidate/bis-thiolate ligands, coordinated by a single-cysteine motif, is unprecedented in biology and raises the question of its role in the activation of CODH at the molecular level.


Asunto(s)
Cisteína/química , Metalochaperonas/química , Níquel/química , Rhodospirillum rubrum/química , Secuencia de Aminoácidos , Sitios de Unión , Cationes Bivalentes/química , Complejos de Coordinación/química , Ligandos , Modelos Moleculares , Nitrógeno/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Solventes/química , Azufre/química , Termodinámica
7.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671552

RESUMEN

Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.


Asunto(s)
Agentes de Control Biológico/farmacología , Glycine max/enzimología , Péptidos/farmacología , Ureasa/química , Animales , Agentes de Control Biológico/química , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Dicroismo Circular , Hemocitos/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Péptidos/química , Proteínas de Plantas/química , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Rhodnius/efectos de los fármacos
8.
J Biol Inorg Chem ; 23(8): 1309-1330, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30264175

RESUMEN

Helicobacter pylori HypA (HpHypA) is a metallochaperone necessary for maturation of [Ni,Fe]-hydrogenase and urease, the enzymes required for colonization and survival of H. pylori in the gastric mucosa. HpHypA contains a structural Zn(II) site and a unique Ni(II) binding site at the N-terminus. X-ray absorption spectra suggested that the Zn(II) coordination depends on pH and on the presence of Ni(II). This study was performed to investigate the structural properties of HpHypA as a function of pH and Ni(II) binding, using NMR spectroscopy combined with DFT and molecular dynamics calculations. The solution structure of apo,Zn-HpHypA, containing Zn(II) but devoid of Ni(II), was determined using 2D, 3D and 4D NMR spectroscopy. The structure suggests that a Ni-binding and a Zn-binding domain, joined through a short linker, could undergo mutual reorientation. This flexibility has no physiological effect on acid viability or urease maturation in H. pylori. Atomistic molecular dynamics simulations suggest that Ni(II) binding is important for the conformational stability of the N-terminal helix. NMR chemical shift perturbation analysis indicates that no structural changes occur in the Zn-binding domain upon addition of Ni(II) in the pH 6.3-7.2 range. The structure of the Ni(II) binding site was probed using 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals around the paramagnetic metal ion. On this basis, two possible models were derived using quantum-mechanical DFT calculations. The results provide a comprehensive picture of the Ni(II) mode to HpHypA, important to rationalize, at the molecular level, the functional interactions of this chaperone with its protein partners.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/química , Metalochaperonas/metabolismo , Níquel/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Teoría Funcional de la Densidad , Escherichia coli/genética , Glicina/genética , Concentración de Iones de Hidrógeno , Metalochaperonas/química , Metalochaperonas/genética , Modelos Químicos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Níquel/química , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Zinc/química , Zinc/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1862(10): 2245-2253, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30048738

RESUMEN

BACKGROUND: Helicobacter pylori is a bacterium strongly associated with gastric cancer. It thrives in the acidic environment of the gastric niche of large portions of the human population using a unique adaptive mechanism that involves the catalytic activity of the nickel-dependent enzyme urease. Targeting urease represents a key strategy for drug design and H. pylori eradication. METHOD: Here, we describe a novel method to screen, directly in the cellular environment, urease inhibitors. A ureolytic Escherichia coli strain was engineered by cloning the entire urease operon in an expression plasmid and used to test in-cell urease inhibition with a high-throughput colorimetric assay. A two-plasmid system was further developed to evaluate the ability of small peptides to block the protein interactions that lead to urease maturation. RESULTS: The developed assay is a robust cellular model to test, directly in the cell environment, urease inhibitors. The efficacy of a co-expressed peptide to affect the interaction between UreF and UreD, two accessory proteins necessary for urease activation, was observed. This event involves a process that occurs through folding upon binding, pointing to the importance of intrinsically disordered hot spots in protein interfaces. CONCLUSIONS: The developed system allows the concomitant screening of a large number of drug candidates that interfere with the urease activity both at the level of the enzyme catalysis and maturation. GENERAL SIGNIFICANCE: As inhibition of urease has the potential of being a global antibacterial strategy for a large number of infections, this work paves the way for the development of new candidates for antibacterial drugs.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Helicobacter pylori/enzimología , Ensayos Analíticos de Alto Rendimiento/métodos , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/química , Helicobacter pylori/genética , Níquel/metabolismo , Fragmentos de Péptidos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ureasa/genética
10.
Biochim Biophys Acta ; 1864(12): 1714-1731, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27645710

RESUMEN

The interplay of the presence of nickel and protein disorder in processes affecting human health is the focus of the present review. Many systems involving nickel as either a cofactor or as a toxic contaminant are characterized by large disorder. The role of nickel in the biochemistry of bacterial enzymes is discussed here, covering both the beneficial effects of nickel in the human microbiota as well as the role of nickel-depending bacteria in human pathogenesis. In addition, the hazardous health effects caused by nickel exposure to humans, namely nickel-induced carcinogenesis and allergy, are triggered by non-specific interactions of nickel with macromolecules and formation of reactive compounds that mediate cellular damage. Cellular response to nickel is also related to signal transduction cascades. This review thus highlights the most promising systems for future studies aimed at decreasing the adverse effects of nickel on human health.


Asunto(s)
Níquel/metabolismo , Níquel/toxicidad , Biocatálisis , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Humanos , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Microbiota/efectos de los fármacos , Microbiota/fisiología , Níquel/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Anal Bioanal Chem ; 408(28): 7971-7980, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27580605

RESUMEN

NikR is a transcription factor that regulates the expression of Ni(II)-dependent enzymes and other proteins involved in nickel trafficking. In the human pathogenic bacterium Helicobacter pylori, NikR (HpNikR) controls, among others, the expression of the Ni(II) enzyme urease by binding the double-strand DNA (dsDNA) operator region of the urease promoter (OP ureA ) in a Ni(II)-dependent mode. This article describes the complementary use of surface plasmon resonance (SPR) spectroscopy and isothermal titration calorimetry (ITC) to carry out a mechanistic characterization of the HpNikR-OP ureA interaction. An active surface was prepared by affinity capture of OP ureA and validated for the recognition process in the SPR experiments. Subsequently, the Ni(II)-dependent affinity of the transcription factor for its operator region was assessed through kinetic evaluation of the binding process at variable Ni(II) concentrations. The kinetic data are consistent with a two-step binding mode involving an initial encounter between the two interactants, followed by a conformational rearrangement of the HpNikR-OP ureA complex, leading to high affinity binding. This conformational change is only observed in the presence of the full set of four Ni(II) ions bound to the protein. The SPR assay developed and validated in this study constitutes a suitable method to screen potential drug lead candidates acting as inhibitors of this protein-dsDNA interaction. Graphical Abstract Pictorial representation of the interaction between HpNikR, flowing in solution, and the OP ureA urease promoter immobilized on the sensor chip surface.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , ADN Bacteriano/genética , Descubrimiento de Drogas , Modelos Biológicos , Unión Proteica , Proteínas Represoras/genética , Resonancia por Plasmón de Superficie , Volumetría , Ureasa/genética , Ureasa/metabolismo
12.
Biochim Biophys Acta ; 1844(9): 1662-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24982029

RESUMEN

Urease, the most efficient enzyme so far discovered, depends on the presence of nickel ions in the catalytic site for its activity. The transformation of inactive apo-urease into active holo-urease requires the insertion of two Ni(II) ions in the substrate binding site, a process that involves the interaction of four accessory proteins named UreD, UreF, UreG and UreE. This study, carried out using calorimetric and NMR-based structural analysis, is focused on the interaction between UreE and UreG from Sporosarcina pasteurii, a highly ureolytic bacterium. Isothermal calorimetric protein-protein titrations revealed the occurrence of a binding event between SpUreE and SpUreG, entailing two independent steps with positive cooperativity (Kd1=42±9µM; Kd2=1.7±0.3µM). This was interpreted as indicating the formation of the (UreE)2(UreG)2 hetero-oligomer upon binding of two UreG monomers onto the pre-formed UreE dimer. The molecular details of this interaction were elucidated using high-resolution NMR spectroscopy. The occurrence of SpUreE chemical shift perturbations upon addition of SpUreG was investigated and analyzed to establish the protein-protein interaction site. The latter appears to involve the Ni(II) binding site as well as mobile portions on the C-terminal and the N-terminal domains. Docking calculations based on the information obtained from NMR provided a structural basis for the protein-protein contact site. The high sequence and structural similarity within these protein classes suggests a generality of the interaction mode among homologous proteins. The implications of these results on the molecular details of the urease activation process are considered and analyzed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Níquel/química , Sporosarcina/química , Ureasa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calorimetría , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cationes Bivalentes , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Níquel/metabolismo , Proteínas de Unión a Fosfato , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sporosarcina/enzimología , Termodinámica , Ureasa/genética , Ureasa/metabolismo
13.
Plant Mol Biol ; 89(1-2): 49-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26245354

RESUMEN

Intrinsically disordered proteins (IDPs) are proteins that lack secondary and/or tertiary structure under physiological conditions. These proteins are very abundant in eukaryotic proteomes and play crucial roles in all molecular mechanisms underlying the response to environmental challenges. In plants, different IDPs involved in stress response have been identified and characterized. Nevertheless, a comprehensive evaluation of protein disorder in plant proteomes under abiotic or biotic stresses is not available so far. In the present work the transcriptome dataset of strawberry (Fragaria X ananassa) fruits interacting with the fungal pathogen Colletotrichum acutatum was actualized onto the woodland strawberry (Fragaria vesca) genome. The obtained cDNA sequences were translated into protein sequences, which were subsequently subjected to disorder analysis. The results, providing the first estimation of disorder abundance associated to plant infection, showed that the proteome activated in the strawberry red fruit during the active fungal propagation is remarkably depleted in disorder. On the other hand, in the resistant white fruit, no significant disorder reduction is observed in the proteins expressed in response to fungal infection. Four representative proteins, FvSMP, FvPRKRIP, FvPCD-4 and FvFAM32A-like, predicted as mainly disordered and never experimentally characterized before, were isolated, and the absence of structure was validated at the secondary and tertiary level using circular dichroism and differential scanning fluorimetry. Their quaternary structure was also established using light scattering. The results are discussed considering the role of protein disorder in plant defense.


Asunto(s)
Colletotrichum/fisiología , Fragaria/microbiología , Interacciones Huésped-Patógeno/fisiología , Proteínas Intrínsecamente Desordenadas/fisiología , Enfermedades de las Plantas/microbiología , Fragaria/genética , Fragaria/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
14.
J Biol Inorg Chem ; 20(4): 739-55, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25846143

RESUMEN

Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the active site. These are delivered by the concerted action of four accessory proteins, named UreD, UreF, UreG and UreE. This process requires protein flexibility at different levels and some disorder-to-order transition events that coordinate the mechanism of protein-protein interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for urease activation, presents a significant degree of intrinsic disorder, existing as a conformational ensemble featuring characteristics that recall a molten globule. Here, the folding properties of UreG were explored in Archaea hyperthermophiles, known to generally feature significantly low level of structural disorder in their proteome. UreG proteins from Methanocaldococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic assays. Metal-binding properties were studied using isothermal titration calorimetry. The results indicate that, as the mesophilic counterparts, both proteins contain a significant amount of secondary structure but maintain a flexible fold and a low GTPase activity. As opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), with affinities two orders of magnitude higher for Zn(II) than for Ni(II). No major modifications of the average conformational ensemble are observed, but binding of Zn(II) yields a more compact dimeric form in MsUreG.


Asunto(s)
Archaea/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Níquel/metabolismo , Ureasa/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Intrínsecamente Desordenadas/química , Methanococcus/enzimología , Proteínas de Unión a Fosfato , Pliegue de Proteína , Temperatura , Ureasa/química
15.
J Biol Inorg Chem ; 20(6): 1021-37, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26204982

RESUMEN

Helicobacter pylori (Hp) is a carcinogen that relies on Ni(II) to survive in the extreme pH conditions of the human guts. The regulation of genes coding for Ni(II) enzymes and proteins is effected by the nickel-responsive transcription factor NikR, composed of a DNA-binding domain (DBD) and a metal-binding domain (MBD). The scope of this study is to obtain the molecular details of the HpNikR interaction with the urease operator OP ureA , in solution. The size of the full-length protein prevents the characterization of the HpNikR-OP ureA interaction using NMR. We thus investigated the two separate domains of HpNikR. The conservation of their oligomeric state was established by multiple-angle light scattering. Isothermal calorimetric titrations indicated that the thermodynamics of Ni(II) binding to the isolated MBD is independent of the presence of the adjacent DBDs. The NMR spectra of the isolated DBD support considerable conservation of its structural properties. The spectral perturbations induced on the DBD by OP ureA provided information useful to calculate a structural model of the HpNikR-OP ureA complex using a docking computational protocol. The NMR assignment of the residues involved in the protein-DNA interaction represents a starting point for the development of drugs potentially able to eradicate H. pylori infections. All evidences so far collected, in this and previous studies, consistently indicate that binding of Ni(II) to the MBD increases the HpNikR-DNA affinity by modulating the dynamic, and not the structural, properties of the protein, suggesting that the formation of a stable complex relies upon an induced fit mechanism.


Asunto(s)
Proteínas Bacterianas/genética , Regiones Operadoras Genéticas/genética , Proteínas Represoras/genética , Helicobacter pylori , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Níquel , Fragmentos de Péptidos/genética , Proteínas Recombinantes/genética , Ureasa/genética
16.
J Biol Inorg Chem ; 19(8): 1341-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25200810

RESUMEN

Urease is an essential Ni(II) enzyme involved in the nitrogen metabolism of bacteria, plants and fungi. Ni(II) delivery into the enzyme active site requires the presence of four accessory proteins, named UreD, UreF, UreG and UreE, acting through a complex protein network regulated by metal binding and GTP hydrolysis. The GTPase activity is catalyzed by UreG, which couples this function to a non-enzymatic role as a molecular chaperone. This moonlighting activity is reflected in a flexible fold that makes UreG the first discovered intrinsically disordered enzyme. UreG binds Ni(II) and Zn(II),which in turn modulate the interactions with other urease chaperones. The aim of this study is to understand the structural implications of metal binding to Sporosarcina pasteurii UreG (SpUreG). A combination of light scattering, calorimetry, mass spectrometry, and NMR spectroscopy revealed that SpUreG exists in monomer-dimer equilibrium (K(d)= 45 µM), sampling three distinct folding populations with different degrees of compactness. Binding of Zn(II) ions, occurring in two distinct sites (K(d1) = 3 nM, K(d2) = 0.53 µM), shifts the protein conformational landscape toward the more compact population, while maintaining the overall protein structural plasticity. Differently, binding of Ni(II) ions occurs in three binding sites (K(d1(= 14 µM; K(d2) = 270 µM; K(d3)= 160 µM), with much weaker influence on the protein conformational equilibrium. These distinct conformational responses of SpUreG to Ni(II) and Zn(II) binding suggest that selective metal binding modulates protein plasticity, possibly having an impact on the protein-protein interactions and the enzymatic activity of UreG.


Asunto(s)
Conformación Molecular/efectos de los fármacos , Níquel/farmacología , Sporosarcina/enzimología , Ureasa/química , Ureasa/metabolismo , Zinc/farmacología , Sitios de Unión , Níquel/metabolismo , Zinc/metabolismo
17.
J Biol Inorg Chem ; 19(3): 319-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24292245

RESUMEN

Helicobacter pylori UreF (HpUreF) is involved in the insertion of Ni(2+) in the urease active site. The recombinant protein in solution is a dimer characterized by an extensive α-helical structure and a well-folded tertiary structure. HpUreF binds two Ni(2+) ions per dimer, with a micromolar dissociation constant, as shown by calorimetry. X-ray absorption spectroscopy indicated that the Ni(2+) ions reside in a five-coordinate pyramidal geometry comprising exclusively N/O-donor ligands derived from the protein, including one or two histidine imidazole and carboxylate ligands. Binding of Ni(2+) does not affect the solution properties of the protein. Mutation to alanine of His229 and/or Cys231, a pair of residues located on the protein surface that interact with H. pylori UreD, altered the affinity of the protein for Ni(2+). This result, complemented by the findings from X-ray absorption spectroscopy, indicates that the Ni(2+) binding site involves His229, and that Cys231 has an indirect structural role in metal binding. An in vivo assay of urease activation demonstrated that H229A HpUreF, C231A HpUreF, and H229/C231 HpUreF are significantly less competent in this process, suggesting a role for a Ni(2+) complex with UreF in urease maturation. This hypothesis was supported by calculations revealing the presence of a tunnel that joins the Cys-Pro-His metal binding site on UreG and an opening on the UreD surface, passing through UreF close to His229 and Cys231, in the structure of the H. pylori UreDFG complex. This tunnel could be used to transfer nickel into the urease active site during apoenzyme-to-holoenzyme activation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Ureasa/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión/fisiología , Células Cultivadas , Helicobacter pylori/enzimología , Holoenzimas/química , Holoenzimas/metabolismo , Níquel/química , Ureasa/química , Espectroscopía de Absorción de Rayos X/métodos
18.
Protein Sci ; 33(3): e4914, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358255

RESUMEN

Cryptochromes are cardinal constituents of the circadian clock, which orchestrates daily physiological rhythms in living organisms. A growing body of evidence points to their participation in pathways that have not traditionally been associated with circadian clock regulation, implying that cryptochromes may be subject to modulation by multiple signaling mechanisms. In this study, we demonstrate that human CRY2 (hCRY2) forms a complex with the large, modular scaffolding protein known as Multi-PDZ Domain Protein 1 (MUPP1). This interaction is facilitated by the calcium-binding protein Calmodulin (CaM) in a calcium-dependent manner. Our findings suggest a novel cooperative mechanism for the regulation of mammalian cryptochromes, mediated by calcium ions (Ca2+ ) and CaM. We propose that this Ca2+ /CaM-mediated signaling pathway may be an evolutionarily conserved mechanism that has been maintained from Drosophila to mammals, most likely in relation to its potential role in the broader context of cryptochrome function and regulation. Further, the understanding of cryptochrome interactions with other proteins and signaling pathways could lead to a better definition of its role within the intricate network of molecular interactions that govern circadian rhythms.


Asunto(s)
Calcio , Criptocromos , Animales , Humanos , Criptocromos/metabolismo , Calcio/metabolismo , Ritmo Circadiano/fisiología , Drosophila/metabolismo , Transducción de Señal , Mamíferos
19.
J Biol Inorg Chem ; 18(8): 1005-17, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24126709

RESUMEN

Urease is a nickel-dependent enzyme that plays a critical role in the biogeochemical nitrogen cycle by catalyzing the hydrolysis of urea to ammonia and carbamate. This enzyme, initially synthesized in the apo form, needs to be activated by incorporation of two nickel ions into the active site, a process driven by the dimeric metallochaperone UreE. Previous studies reported that this protein can bind different metal ions in vitro, beside the cognate Ni(II). This study explores the metal selectivity and affinity of UreE from Sporosarcina pasteurii (Sp, formerly known as Bacillus pasteurii) for cognate [Ni(II)] and noncognate [Zn(II)] metal ions. In particular, the thermodynamic parameters of SpUreE Ni(II) and Zn(II) binding have been determined using isothermal titration calorimetry. These experiments show that two Ni(II) ions bind to the protein dimer with positive cooperativity. The high-affinity site involves the conserved solvent-exposed His(100) and the C-terminal His(145), whereas the low-affinity site comprises also the C-terminal His(147). Zn(II) binding to the protein, occurring in the same protein regions and with similar affinity as compared to Ni(II), causes metal-driven dimerization of the protein dimer. The crystal structure of the protein obtained in the presence of equimolar amounts of both metal ions indicates that the high-affinity metal binding site binds Ni(II) preferentially over Zn(II). The ability of the protein to select Ni(II) over Zn(II) was confirmed by competition experiments in solution as well as by analysis of X-ray anomalous dispersion data. Overall, the thermodynamics and structural parameters that modulate the metal ion specificity of the different binding sites on the protein surface of SpUreE have been established.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Níquel/metabolismo , Sporosarcina/enzimología , Ureasa/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas Portadoras/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Sporosarcina/metabolismo , Ureasa/química
20.
Biochem J ; 441(3): 1017-26, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22010876

RESUMEN

The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni²âº ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni²âº insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni⁺- and Zn⁺-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni²âº) and 2.52 Å (Zn²âº) resolution, show the conserved proximal and solvent-exposed His¹°² residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His¹5². The analysis of X-ray absorption spectral data obtained using solutions of Ni²âº- and Zn²âº-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Helicobacter pylori , Níquel/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Zinc/metabolismo , Transporte Biológico , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cristalografía por Rayos X , Helicobacter pylori/enzimología , Helicobacter pylori/metabolismo , Modelos Biológicos , Modelos Moleculares , Níquel/química , Unión Proteica , Estereoisomerismo , Especificidad por Sustrato , Espectroscopía de Absorción de Rayos X , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA