Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Acta Neuropathol ; 143(6): 713-731, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522298

RESUMEN

Androgens and androgen-related molecules exert a plethora of functions across different tissues, mainly through binding to the transcription factor androgen receptor (AR). Despite widespread therapeutic use and misuse of androgens as potent anabolic agents, the molecular mechanisms of this effect on skeletal muscle are currently unknown. Muscle mass in adulthood is mainly regulated by the bone morphogenetic protein (BMP) axis of the transforming growth factor (TGF)-ß pathway via recruitment of mothers against decapentaplegic homolog 4 (SMAD4) protein. Here we show that, upon activation, AR forms a transcriptional complex with SMAD4 to orchestrate a muscle hypertrophy programme by modulating SMAD4 chromatin binding dynamics and enhancing its transactivation activity. We challenged this mechanism of action using spinal and bulbar muscular atrophy (SBMA) as a model of study. This adult-onset neuromuscular disease is caused by a polyglutamine expansion (polyQ) in AR and is characterized by progressive muscle weakness and atrophy secondary to a combination of lower motor neuron degeneration and primary muscle atrophy. Here we found that the presence of an elongated polyQ tract impairs AR cooperativity with SMAD4, leading to an inability to mount an effective anti-atrophy gene expression programme in skeletal muscle in response to denervation. Furthermore, adeno-associated virus, serotype 9 (AAV9)-mediated muscle-restricted delivery of BMP7 is able to rescue the muscle atrophy in SBMA mice, supporting the development of treatments able to fine-tune AR-SMAD4 transcriptional cooperativity as a promising target for SBMA and other conditions associated with muscle loss.


Asunto(s)
Atrofia Muscular Espinal , Receptores Androgénicos , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Homeostasis , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Receptores Androgénicos/genética , Proteína Smad4
2.
Biochem J ; 477(17): 3329-3347, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32815546

RESUMEN

Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor ErbB-3 , Regulación Alostérica , Animales , Células CHO , Cricetulus , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Prueba de Estudio Conceptual , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/química , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
3.
Methods ; 95: 86-93, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26484734

RESUMEN

The challenge of determining the architecture and geometry of oligomers of the epidermal growth factor receptor (EGFR) on the cell surface has been approached using a variety of biochemical and biophysical methods. This review is intended to provide a narrative of how key concepts in the field of EGFR research have evolved over the years, from the origins of the prevalent EGFR signalling dimer hypothesis through to the development and implementation of methods that are now challenging the conventional view. The synergy between X-ray crystallography and cellular fluorescence microscopy has become particularly important, precisely because the results from these two methods diverged and highlighted the complexity of the challenge. We illustrate how developments in super-resolution microscopy are now bridging this gap. Exciting times lie ahead where knowledge of the nature of the complexes can assist with the development of a new generation of anti-cancer drugs.


Asunto(s)
Membrana Celular/ultraestructura , Cristalografía por Rayos X/métodos , Receptores ErbB/ultraestructura , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Regulación Alostérica , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Simulación de Dinámica Molecular , Fosforilación , Multimerización de Proteína , Transducción de Señal
4.
Methods ; 88: 76-80, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25980369

RESUMEN

Although considerable progress has been made in imaging distances in cells below the diffraction limit using FRET and super-resolution microscopy, methods for determining the separation of macromolecules in the 10-50 nm range have been elusive. We have developed fluorophore localisation imaging with photobleaching (FLImP), based on the quantised bleaching of individual protein-bound dye molecules, to quantitate the molecular separations in oligomers and nanoscale clusters. We demonstrate the benefits of using our method in studying the nanometric organisation of the epidermal growth factor receptor in cells.


Asunto(s)
Receptores ErbB/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Fotoblanqueo , Animales , Cricetinae , Femenino , Humanos , Sustancias Macromoleculares
5.
Biochem Soc Trans ; 43(3): 309-14, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26009168

RESUMEN

There is a limited range of methods available to characterize macromolecular organization in cells on length scales from 5-50 nm. We review methods currently available and show the latest results from a new single-molecule localization-based method, fluorophore localization imaging with photobleaching (FLImP), using the epidermal growth factor (EGF) receptor (EGFR) as an example system. Our measurements show that FLImP is capable of achieving spatial resolution in the order of 6 nm.


Asunto(s)
Factor de Crecimiento Epidérmico/química , Receptores ErbB/química , Sustancias Macromoleculares/química , Colorantes Fluorescentes/química , Humanos , Multimerización de Proteína
6.
Biochem Soc Trans ; 42(1): 114-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24450637

RESUMEN

Dimerization and higher-order oligomerization are believed to play an important role in the activation of the EGFR (epidermal growth factor receptor). Understanding of the process has been limited by the lack of availability of suitable methods for the measurement in cells of distances in the range 10-100 nm, too short for imaging methods and too long for spectroscopic methods such as FRET. In the present article, we review the current state of our knowledge of EGFR oligomerization, and describe results from a new single-molecule localization method that has allowed the quantitative characterization of the distribution of EGFR-EGFR distances in cells. Recent data suggest the involvement of cortical actin in regulating the formation of EGFR complexes.


Asunto(s)
Receptores ErbB/fisiología , Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
7.
Methods Cell Biol ; 187: 249-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705627

RESUMEN

Cryogenic ultrastructural imaging techniques such as cryo-electron tomography have produced a revolution in how the structure of biological systems is investigated by enabling the determination of structures of protein complexes immersed in a complex biological matrix within vitrified cell and model organisms. However, so far, the portfolio of successes has been mostly limited to highly abundant complexes or to structures that are relatively unambiguous and easy to identify through electron microscopy. In order to realize the full potential of this revolution, researchers would have to be able to pinpoint lower abundance species and obtain functional annotations on the state of objects of interest which would then be correlated to ultrastructural information to build a complete picture of the structure-function relationships underpinning biological processes. Fluorescence imaging at cryogenic conditions has the potential to be able to meet these demands. However, wide-field images acquired at low numeric aperture (NA) using air immersion objective have a low resolving power and cannot provide accurate enough three-dimensional (3D) localization to enable the assignment of functional annotations to individual objects of interest or target sample debulking to ensure the preservation of the structures of interest. It is therefore necessary to develop super-resolved cryo-fluorescence workflows capable of fulfilling this role and enabling new biological discoveries. In this chapter, we present the current state of development of two super-resolution cryogenic fluorescence techniques, superSIL-STORM and astigmatism-based 3D STORM, show their application to a variety of biological systems and discuss their advantages and limitations. We further discuss the future applicability to cryo-CLEM workflows though examples of practical application to the study of membrane protein complexes both in mammalian cells and in Escherichia coli.


Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Humanos , Animales , Imagenología Tridimensional/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos
8.
Nat Commun ; 15(1): 2130, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503739

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ligandos , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética
9.
ACS Catal ; 13(24): 15956-15966, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125980

RESUMEN

The nanoparticle (NP) redox state is an important parameter in the performance of cobalt-based Fischer-Tropsch synthesis (FTS) catalysts. Here, the compositional evolution of individual CoNPs (6-24 nm) in terms of the oxide vs metallic state was investigated in situ during CO/syngas treatment using spatially resolved X-ray absorption spectroscopy (XAS)/X-ray photoemission electron microscopy (X-PEEM). It was observed that in the presence of CO, smaller CoNPs (i.e., ≤12 nm in size) remained in the metallic state, whereas NPs ≥ 15 nm became partially oxidized, suggesting that the latter were more readily able to dissociate CO. In contrast, in the presence of syngas, the oxide content of NPs ≥ 15 nm reduced, while it increased in quantity in the smaller NPs; this reoxidation that occurs primarily at the surface proved to be temporary, reforming the reduced state during subsequent UHV annealing. O K-edge measurements revealed that a key parameter mitigating the redox behavior of the CoNPs were proximate oxygen vacancies (Ovac). These results demonstrate the differences in the reducibility and the reactivity of Co NP size on a Co/TiO2 catalyst and the effect Ovac have on these properties, therefore yielding a better understanding of the physicochemical properties of this popular choice of FTS catalysts.

10.
ACS Catal ; 12(15): 9125-9134, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35966607

RESUMEN

Improving both the extent of metallic Co nanoparticle (Co NP) formation and their stability is necessary to ensure good catalytic performance, particularly for Fischer-Tropsch synthesis (FTS). Here, we observe how the presence of surface oxygen vacancies (Ovac) on TiO2 can readily reduce individual Co3O4 NPs directly into CoO/Co0 in the freshly prepared sample by using a combination of X-ray photoemission electron microscopy (X-PEEM) coupled with soft X-ray absorption spectroscopy. The Ovac are particularly good at reducing the edge of the NPs as opposed to their center, leading to smaller particles being more reduced than larger ones. We then show how further reduction (and Ovac consumption) is achieved during heating in H2/syngas (H2 + CO) and reveal that Ovac also prevents total reoxidation of Co NPs in syngas, particularly the smallest (∼8 nm) particles, thus maintaining the presence of metallic Co, potentially improving catalyst performance.

11.
Nat Commun ; 13(1): 5221, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064719

RESUMEN

Methane-oxidizing bacteria play a central role in greenhouse gas mitigation and have potential applications in biomanufacturing. Their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is housed in copper-induced intracytoplasmic membranes (ICMs), of which the function and biogenesis are not known. We show by serial cryo-focused ion beam (cryoFIB) milling/scanning electron microscope (SEM) volume imaging and lamellae-based cellular cryo-electron tomography (cryoET) that these ICMs are derived from the inner cell membrane. The pMMO trimer, resolved by cryoET and subtomogram averaging to 4.8 Å in the ICM, forms higher-order hexagonal arrays in intact cells. Array formation correlates with increased enzymatic activity, highlighting the importance of studying the enzyme in its native environment. These findings also demonstrate the power of cryoET to structurally characterize native membrane enzymes in the cellular context.


Asunto(s)
Methylococcaceae , Oxigenasas , Cobre/química , Metano/metabolismo , Methylococcaceae/metabolismo , Minerales , Oxidación-Reducción , Oxigenasas/metabolismo
12.
J Proteome Res ; 10(9): 4196-207, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21751813

RESUMEN

In principle, targeted therapies have optimal activity against a specific subset of tumors that depend upon the targeted molecule or pathway for growth, survival, or metastasis. Consequently, it is important in drug development and clinical practice to have predictive biomarkers that can reliably identify patients who will benefit from a given therapy. We analyzed tumor cell-line secretomes (conditioned cell media) to look for predictive biomarkers; secretomes represent a potential source for potential biomarkers that are expressed in intracellular signaling and therefore may reflect changes induced by targeted therapy. Using Gene Ontology, we classified by function the secretome proteins of 12 tumor cell lines of different histotypes. Representations and hierarchical relationships among the functional groups differed among the cell lines. Using bioinformatics tools, we identified proteins involved in intracellular signaling pathways. For example, we found that secretome proteins related to TGF-beta signaling in thyroid cancer cells, such as vasorin, CD109, and ßIG-H3 (TGFBI), were sensitive to RPI-1 and dasatinib treatments, which have been previously demonstrated to be effective in blocking cell proliferation. The secretome may be a valuable source of potential biomarkers for detecting cancer and measuring the effectiveness of cancer therapies.


Asunto(s)
Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias/química , Neoplasias/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Análisis por Conglomerados , Biología Computacional , Dasatinib , Bases de Datos de Proteínas , Humanos , Espacio Intracelular , Modelos Biológicos , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/química , Neoplasias/tratamiento farmacológico , Fosfotirosina/análisis , Fosfotirosina/química , Pirimidinas/farmacología , Transducción de Señal , Tiazoles/farmacología , Factor de Crecimiento Transformador beta
13.
Structure ; 29(1): 82-87.e3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33096015

RESUMEN

The advancement of serial cryoFIB/SEM offers an opportunity to study large volumes of near-native, fully hydrated frozen cells and tissues at voxel sizes of 10 nm and below. We explored this capability for pathologic characterization of vitrified human patient cells by developing and optimizing a serial cryoFIB/SEM volume imaging workflow. We demonstrate profound disruption of subcellular architecture in primary fibroblasts from a Leigh syndrome patient harboring a disease-causing mutation in USMG5 protein responsible for impaired mitochondrial energy production.


Asunto(s)
Fibroblastos/ultraestructura , Enfermedad de Leigh/patología , Células Cultivadas , Microscopía por Crioelectrón/métodos , Humanos , Enfermedad de Leigh/genética , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Cultivo Primario de Células/métodos
14.
Res Sq ; 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33501431

RESUMEN

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the frozen-hydrated native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate the cytopathic events induced by SARS-CoV-2 with virus replication process under the frozen-hydrated condition, here we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. The results place critical SARS-CoV-2 structural events â€" e.g. viral RNA transport portals on double membrane vesicles, virus assembly and budding intermediates, virus egress pathways, and native virus spike structures from intracellular assembled and extracellular released virus - in the context of whole-cell images. The latter revealed numerous heterogeneous cytoplasmic vesicles, the formation of membrane tunnels through which viruses exit, and the drastic cytoplasm invasion into the nucleus. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.

15.
Nat Commun ; 12(1): 4629, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330917

RESUMEN

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Ensamble de Virus/inmunología , Liberación del Virus/inmunología , Replicación Viral/inmunología , Animales , COVID-19/epidemiología , COVID-19/virología , Chlorocebus aethiops , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Humanos , Pandemias/prevención & control , SARS-CoV-2/fisiología , SARS-CoV-2/ultraestructura , Células Vero , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Replicación Viral/fisiología
16.
Cells ; 9(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228060

RESUMEN

EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.


Asunto(s)
Transición Epitelial-Mesenquimal/inmunología , Vesículas Extracelulares/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Humanos , Transducción de Señal , Microambiente Tumoral
17.
Cells ; 9(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302515

RESUMEN

Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Progresión de la Enfermedad , Endocitosis , Transición Epitelial-Mesenquimal , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Neoplasias/patología , Transducción de Señal , Tetraspaninas/metabolismo , Microambiente Tumoral
18.
bioRxiv ; 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33173874

RESUMEN

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.

19.
Cells ; 8(4)2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959819

RESUMEN

The epidermal growth factor receptor (EGFR) is historically the prototypical receptor tyrosine kinase, being the first cloned and the first where the importance of ligand-induced dimer activation was ascertained. However, many years of structure determination has shown that EGFR is not completely understood. One challenge is that the many structure fragments stored at the PDB only provide a partial view because full-length proteins are flexible entities and dynamics play a key role in their functionality. Another challenge is the shortage of high-resolution data on functionally important higher-order complexes. Still, the interest in the structure/function relationships of EGFR remains unabated because of the crucial role played by oncogenic EGFR mutants in driving non-small cell lung cancer (NSCLC). Despite targeted therapies against EGFR setting a milestone in the treatment of this disease, ubiquitous drug resistance inevitably emerges after one year or so of treatment. The magnitude of the challenge has inspired novel strategies. Among these, the combination of multi-disciplinary experiments and molecular dynamic (MD) simulations have been pivotal in revealing the basic nature of EGFR monomers, dimers and multimers, and the structure-function relationships that underpin the mechanisms by which EGFR dysregulation contributes to the onset of NSCLC and resistance to treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Animales , Glicosilación , Humanos , Simulación de Dinámica Molecular , Relación Estructura-Actividad
20.
Bio Protoc ; 9(22): e3426, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654923

RESUMEN

Our mechanistic understanding of cell function depends on imaging biological processes in cells with molecular resolution. Super-resolution fluorescence microscopy plays a crucial role by reporting cellular ultrastructure with 20-30 nm resolution. However, this resolution is insufficient to image macro-molecular machinery at work. A path to improve resolution is to image under cryogenic conditions, which substantially increases the brightness of most fluorophores and preserves native ultrastructure much better than chemical fixatives. Cryogenic conditions are, however, underutilized because of the lack of compatible high numerical aperture (NA) objectives. Here we describe a protocol for the use of super-hemispherical solid immersion lenses (superSILs) to achieve super-resolution imaging at cryogenic temperatures with an effective NA of 2.17 and resolution of ~10 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA