RESUMEN
Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the â¼85% of the ASD population that remain idiopathic.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , GenómicaRESUMEN
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Humanos , Niño , Salud Mental , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Dosificación de GenRESUMEN
BACKGROUND: We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS: All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS: On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION: In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Niño , Humanos , Masculino , Deleción Cromosómica , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Familia , Fenotipo , Variación Biológica Poblacional , Cromosomas Humanos Par 16/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genéticaRESUMEN
Copy number variants (CNVs) represent major etiologic factors in rare genetic diseases. Current clinical CNV interpretation workflows require extensive back-and-forth with multiple tools and databases. This increases complexity and time burden, potentially resulting in missed genetic diagnoses. We present the Suite for CNV Interpretation and Prioritization (SCIP), a software package for the clinical interpretation of CNVs detected by whole-genome sequencing (WGS). The SCIP Visualization Module near-instantaneously displays all information necessary for CNV interpretation (variant quality, population frequency, inheritance pattern, and clinical relevance) on a single page-supported by modules providing variant filtration and prioritization. SCIP was comprehensively evaluated using WGS data from 1027 families with congenital cardiac disease and/or autism spectrum disorder, containing 187 pathogenic or likely pathogenic (P/LP) CNVs identified in previous curations. SCIP was efficient in filtration and prioritization: a median of just two CNVs per case were selected for review, yet it captured all P/LP findings (92.5% of which ranked 1st). SCIP was also able to identify one pathogenic CNV previously missed. SCIP was benchmarked against AnnotSV and a spreadsheet-based manual workflow and performed superiorly than both. In conclusion, SCIP is a novel software package for efficient clinical CNV interpretation, substantially faster and more accurate than previous tools (available at https://github.com/qd29/SCIP , a video tutorial series is available at https://bit.ly/SCIPVideos ).
Asunto(s)
Trastorno del Espectro Autista , Variaciones en el Número de Copia de ADN , Humanos , Secuenciación Completa del Genoma , Programas Informáticos , Enfermedades RarasRESUMEN
Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Masculino , Femenino , Trastorno Autístico/genética , Canal Catiónico TRPC6/genética , Trastorno del Espectro Autista/genética , Drosophila , Drosophila melanogaster/genética , Mutación/genéticaRESUMEN
Prediction of pathogenicity of rare copy number variations (CNVs), a genomic alteration known to contribute to the etiology of autism spectrum disorder (ASD), represents a serious limitation to interpreting genetic tests, particularly for genetic counseling purposes. Chromosomal microarray analysis (CMA) was conducted in a unique collection of 144 Brazilian individuals with ASD of strong European and African ancestries. Rare CNVs were detected in 39 patients: 41 of unknown significance (VUS), four pathogenic and one likely pathogenic CNVs (clinical yield of 4.1%; 5/122). Based on gene content and recurrence in three large cohorts [a Brazilian neurodevelopmental disorder cohort, the autism MSSNG cohort, and the Canadian-based Centre for Applied Genomics microarray database], this work strengthened the pathogenicity of 14 genes (FAT1, CAMK4, BIRC6, DPP6, CSMD1, CTNNA3, CDH8/CDH11, CDH13, OR1C1, CNTN6, CNTNAP4, FGF2 and PTPRN2) within 14 CNVs. Notably, enrichment of cell adhesion proteins to ASD etiology was identified (p < 0.05), highlighting the importance of these gene families in the etiology of ASD.
Asunto(s)
Alelos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Adhesión Celular/genética , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Brasil , Niño , Preescolar , Mapeo Cromosómico , Hibridación Genómica Comparativa , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Fenotipo , Adulto JovenRESUMEN
BACKGROUND: In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of 'brain to behaviour' pathogenic mechanisms, remains largely unknown. METHODS: We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). RESULTS: We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10-11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10-11, oligodendrocyte, p < 1.31 × 10-09). CONCLUSION: Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.
Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Exones , Regulación de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/genética , Neuroglía/patología , Receptores de Superficie Celular/genética , Transcriptoma/genéticaRESUMEN
Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.
Asunto(s)
Variaciones en el Número de Copia de ADN , Adolescente , Variaciones en el Número de Copia de ADN/genética , Humanos , Masculino , Mutación/genética , Fenotipo , Secuenciación del ExomaRESUMEN
PURPOSE: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach. METHODS: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort. Functional effects of duplications in PPP2R3B were investigated using immunohistochemistry, transcriptomics, and stable inducible cellular models, themselves characterized using RNAseq, quantitative real-time polymerase chain reaction (qRT-PCR), reverse phase protein arrays, immunoblotting, RNA interference, immunocytochemistry, proliferation, and migration assays. RESULTS: We identify here a previously unreported genetic susceptibility to melanoma and melanocytic nevi, familial duplications of gene PPP2R3B. This encodes PR70, a regulatory unit of critical phosphatase PP2A. Duplications increase expression of PR70 in human nevus, and increased expression in melanoma tissue correlates with survival via a nonimmunological mechanism. PPP2R3B overexpression induces pigment cell switching toward proliferation and away from migration. Importantly, this is independent of the known microphthalmia-associated transcription factor (MITF)-controlled switch, instead driven by C21orf91. Finally, C21orf91 is demonstrated to be downstream of MITF as well as PR70. CONCLUSION: This work confirms the power of a rare disease approach, identifying a previously unreported copy-number change predisposing to melanocytic neoplasia, and discovers C21orf91 as a potentially targetable hub in the control of phenotype switching.
Asunto(s)
Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Inmunohistoquímica , Melanoma/genética , Fenotipo , Neoplasias Cutáneas/genéticaRESUMEN
A major contribution to the genome variability among individuals comes from deletions and duplications - collectively termed copy number variations (CNVs) - which alter the diploid status of DNA. These alterations may have no phenotypic effect, account for adaptive traits or can underlie disease. We have compiled published high-quality data on healthy individuals of various ethnicities to construct an updated CNV map of the human genome. Depending on the level of stringency of the map, we estimated that 4.8-9.5% of the genome contributes to CNV and found approximately 100 genes that can be completely deleted without producing apparent phenotypic consequences. This map will aid the interpretation of new CNV findings for both clinical and research applications.
Asunto(s)
Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Genoma Humano , ADN/genética , Eliminación de Gen , Duplicación de Gen , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , FenotipoRESUMEN
BACKGROUND: Pediatric high-grade gliomas (pHGGs) are incurable malignant brain cancers. Clear somatic genetic drivers are difficult to identify in the majority of cases. We hypothesized that this may be due to the existence of germline variants that influence tumor etiology and/or progression and are filtered out using traditional pipelines for somatic mutation calling. METHODS: In this study, we analyzed whole-genome sequencing (WGS) datasets of matched germlines and tumor tissues to identify recurrent germline variants in pHGG patients. RESULTS: We identified two structural variants that were highly recurrent in a discovery cohort of 8 pHGG patients. One was a ~ 40 kb deletion immediately upstream of the NEGR1 locus and predicted to remove the promoter region of this gene. This copy number variant (CNV) was present in all patients in our discovery cohort (n = 8) and in 86.3% of patients in our validation cohort (n = 73 cases). We also identified a second recurrent deletion 55.7 kb in size affecting the BTNL3 and BTNL8 loci. This BTNL3-8 deletion was observed in 62.5% patients in our discovery cohort, and in 17.8% of the patients in the validation cohort. Our single-cell RNA sequencing (scRNA-seq) data showed that both deletions result in disruption of transcription of the affected genes. However, analysis of genomic information from multiple non-cancer cohorts showed that both the NEGR1 promoter deletion and the BTNL3-8 deletion were CNVs occurring at high frequencies in the general population. Intriguingly, the upstream NEGR1 CNV deletion was homozygous in ~ 40% of individuals in the non-cancer population. This finding was immediately relevant because the affected genes have important physiological functions, and our analyses showed that NEGR1 expression levels have prognostic value for pHGG patient survival. We also found that these deletions occurred at different frequencies among different ethnic groups. CONCLUSIONS: Our study highlights the need to integrate cancer genomic analyses and genomic data from large control populations. Failure to do so may lead to spurious association of genes with cancer etiology. Importantly, our results showcase the need for careful evaluation of differences in the frequency of genetic variants among different ethnic groups.
Asunto(s)
Butirofilinas/genética , Moléculas de Adhesión Celular Neuronal/genética , Predisposición Genética a la Enfermedad , Glioma/genética , Variaciones en el Número de Copia de ADN/genética , Bases de Datos Genéticas , Supervivencia sin Enfermedad , Femenino , Proteínas Ligadas a GPI/genética , Regulación Neoplásica de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal/genética , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Pediatría , Polimorfismo de Nucleótido Simple/genética , Secuenciación del Exoma , Secuenciación Completa del GenomaRESUMEN
Chromosome 15q24 microdeletion syndrome is characterized by developmental delay, facial dysmorphism, hearing loss, hypotonia, recurrent infection, and other congenital malformations including microcephaly, scoliosis, joint laxity, digital anomalies, as well as sometimes having autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we report a boy with a 2.58-Mb de novo deletion at chromosome 15q24. He is diagnosed with ASD and having multiple phenotypes similar to those reported in cases having 15q24 microdeletion syndrome. To delineate the critical genes and region that might be responsible for these phenotypes, we reviewed all previously published cases. We observe a potential minimum critical region of 650 kb (LCR15q24A-B) affecting NEO1 among other genes that might pertinent to individuals with ASD carrying this deletion. In contrast, a previously defined minimum critical region downstream of the 650-kb interval (LCR15q24B-D) is more likely associated with the developmental delay, facial dysmorphism, recurrent infection, and other congenital malformations. As a result, the ASD phenotype in this individual is potentially attributed by genes particularly NEO1 within the newly proposed critical region.
Asunto(s)
Trastorno del Espectro Autista/genética , Trastornos de los Cromosomas/genética , Dedos/anomalías , Discapacidad Intelectual/genética , Polimorfismo de Nucleótido Simple , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 15/genética , Anomalías Congénitas/genética , Eliminación de Gen , Dosificación de Gen , Variación Genética , Humanos , Inestabilidad de la Articulación/complicaciones , Masculino , Microcefalia/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Escoliosis/genéticaRESUMEN
Autism spectrum disorder (ASD) is a relatively common childhood onset neurodevelopmental disorder with a complex genetic etiology. While progress has been made in identifying the de novo mutational landscape of ASD, the genetic factors that underpin the ASD's tendency to run in families are not well understood. In this study, nine extended pedigrees each with three or more individuals with ASD, and others with a lesser autism phenotype, were phenotyped and genotyped in an attempt to identify heritable copy number variants (CNVs). Although these families have previously generated linkage signals, no rare CNV segregated with these signals in any family. A small number of clinically relevant CNVs were identified. Only one CNV was identified that segregated with ASD phenotype; namely, a duplication overlapping DLGAP2 in three male offspring each with an ASD diagnosis. This gene encodes a synaptic scaffolding protein, part of a group of proteins known to be pathologically implicated in ASD. On the whole, however, the heritable nature of ASD in the families studied remains poorly understood.
Asunto(s)
Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Dosificación de Gen , Linaje , Trastorno Autístico/genética , Niño , Preescolar , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Lactante , Masculino , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Factores de Riesgo , Sinapsis/metabolismo , Secuenciación Completa del GenomaRESUMEN
Fetal alcohol spectrum disorder (FASD) is characterized by a combination of neurological, developmental, and congenital defects that may occur as a consequence of prenatal alcohol exposure. Earlier reports showed that large chromosomal anomalies may link to FASD. Here, we examined the prevalence and types of copy number variations (CNVs) in FASD cases previously diagnosed by a multidisciplinary FASD team in sites across Canada. We genotyped 95 children with FASD and 87 age-matched, typically developing controls on the Illumina Human Omni2.5 SNP (single nucleotide polymorphisms) array platform. We compared their CNVs with those of 10 851 population controls to identify rare CNVs (<0.1% frequency), which may include large unbalanced chromosomal abnormalities, that might be relevant to FASD. In 12/95 (13%) of the FASD cases, rare CNVs were found that impact potentially clinically relevant developmental genes, including the CACNA1H involved in epilepsy and autism, the 3q29 deletion disorder, and others. Our results show that a subset of children diagnosed with FASD have chromosomal deletions and duplications that may co-occur or explain the neurodevelopmental impairments in a diagnosed cohort of FASD individuals. Children suspected to have FASD with or without sentinel facial features of fetal alcohol syndrome and neurodevelopmental delays should potentially be evaluated by a clinical geneticist and possibly have genetic investigations as appropriate to exclude other etiologies.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3/genética , Trastornos del Espectro Alcohólico Fetal/genética , Dosificación de Gen , Polimorfismo de Nucleótido Simple , Niño , Preescolar , Femenino , Humanos , MasculinoRESUMEN
PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.
Asunto(s)
Parálisis Cerebral/diagnóstico , Parálisis Cerebral/genética , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Hemiplejía/diagnóstico , Hemiplejía/genética , Fenotipo , Adolescente , Niño , Preescolar , Aberraciones Cromosómicas , Estudios Transversales , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Neuroimagen/métodos , Linaje , Estudios Retrospectivos , Factores de Riesgo , Secuenciación del ExomaRESUMEN
IMMP2L, the gene encoding the inner mitochondrial membrane peptidase subunit 2-like protein, has been reported as a candidate gene for Tourette syndrome, autism spectrum disorder (ASD) and additional neurodevelopmental disorders. Here we genotyped 100 trio families with an index proband with autism spectrum disorder in Han Chinese population and found three cases with rare exonic IMMP2L deletions. We have conducted a comprehensive meta-analysis to quantify the association of IMMP2L deletions with ASD using 5,568 cases and 10,279 controls. While the IMMP2L deletions carried non-recurrent breakpoints, in contrast to previous reports, our meta-analysis found no evidence of association (P > 0.05) between IMMP2L deletions and ASD. We also observed common exonic deletions impacting IMMP2L in a separate control (5,971 samples) cohort where subjects were screened for psychiatric conditions. This is the first systematic review and meta-analysis regarding the effect of IMMP2L deletions on ASD, but further investigations in different populations, especially Chinese population may be still needed to confirm our results.
Asunto(s)
Trastorno del Espectro Autista/genética , Endopeptidasas/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Estudios de Cohortes , Endopeptidasas/metabolismo , Etnicidad/genética , Exones/genética , Familia , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/genética , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia/genéticaRESUMEN
We present an 18-year-old boy with cerebral palsy, intellectual disability, speech delay, and seizures. He carries a likely pathogenic 1.3 Mb de novo heterozygous deletion in the 4q21.22 microdeletion syndrome region. He also carries a 436 kb maternally-inherited duplication impacting the first three exons of CHRNA7. The majority of previously published cases with 4q21.22 syndrome shared common features including growth restriction, muscular hypotonia, and absent or severely delayed speech. Using copy number variation (CNV) data available for other subjects, we defined a minimal critical region of 170.8 kb within the syndromic region, encompassing HNRNPD. We also identified a larger 2 Mb critical region encompassing ten protein-coding genes, of which six (PRKG2, RASGEF1B, HNRNPDL, HNRNPD, LIN54, COPS4) have a significantly low number of truncating loss-of-function mutations. Long-range chromatin interaction data suggest that this deletion may alter chromatin interactions at the 4q21.22 microdeletion region. We suggest that the deletion or misregulation of these genes is likely to contribute to the neurodevelopmental and neuromuscular abnormalities in 4q21.22 syndrome.
Asunto(s)
Parálisis Cerebral/genética , Cromosomas Humanos Par 4/genética , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Adolescente , Parálisis Cerebral/fisiopatología , Deleción Cromosómica , Variaciones en el Número de Copia de ADN/genética , Exones/genética , Humanos , Discapacidad Intelectual/fisiopatología , Trastornos del Desarrollo del Lenguaje/fisiopatología , Masculino , Receptor Nicotínico de Acetilcolina alfa 7/genéticaRESUMEN
We describe two brothers from a consanguineous family of Egyptian ancestry, presenting with microcephaly, apparent global developmental delay, seizures, spasticity, congenital blindness, and multiple cutaneous capillary malformations. Through exome sequencing, we uncovered a homozygous missense variant in STAMBP (p.K303R) in the two siblings, inherited from heterozygous carrier parents. Mutations in STAMBP are known to cause microcephaly-capillary malformation syndrome (MIC-CAP) and the phenotype in this family is consistent with this diagnosis. We compared the findings in the present brothers with those of earlier reported patients. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Capilares/anomalías , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Homocigoto , Microcefalia/diagnóstico , Microcefalia/genética , Ubiquitina Tiolesterasa/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Encéfalo/patología , Consanguinidad , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Exoma , Facies , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Fenotipo , Hermanos , SíndromeRESUMEN
INTRODUCTION: Adolescent idiopathic scoliosis (AIS) and schizophrenia (SCZ) are two distinct conditions with poorly understood aetiologies that both emerge in otherwise healthy young adolescents. One rare genetic condition associated with both phenotypic outcomes is the 22q11.2 deletion (22q11DS). This microdeletion, encompassing 47 genes, occurs in approximately 1 in 2,148 live births and confers a 20-fold higher risk for both AIS and schizophrenia compared to the general population. In the general population (non-22q11DS carriers), AIS and SCZ have also been reported to be related and genetic studies suggest the involvement of genetic variants implicated in the central nervous functioning. In this study, our objective was to further investigate genetic overlaps between these conditions in the general population. Specifically, we aimed to explore the role of genes within the 22q11.2 region, not only in terms of common variants but also their potential impact on gene networks and biopathways. METHODS: We used summary statistics from three genome-wide association studies (GWAS): two focused on AIS (n = 11,210), and one on schizophrenia (n = 36,989). To explore potential overlaps between the two conditions, we conducted a comparative analysis on the significance-based ranked single nucleotide polymorphisms (SNPs) that are associated with both AIS and SCZ. Next, we employed in silico analyses to assess gene-networks enrichment for the most significant SNPs and investigate the contribution of genes within the 22q11.2 region. Post-hoc analysis was conducted to explore the biological pathways correlated with SNPs significantly associated with both AIS and SCZ. RESULTS: The in silico analyses revealed a significant (adjusted-p < 0.05) genetic overlap between SCZ and both AIS cohorts. The top 3% of the most significant SNPs associated with both conditions exhibited a distinct enrichment cluster which is unlikely to be a result of chance (p < 3e-04). The gene-networks analyses showed a significant overlap of 26-41% with the ones involving genes in the 22q11DS region. However, there was no overlap between SNPs in this region and the most significant SNPs identified in the GWAS. CONCLUSION: This study revealed compelling evidence that beyond the shared association with 22q11DS as a rare genetic variant, AIS and SCZ exhibit common genetic risk variants and an overlap of important genes. The gene networks enriched by the most significant SNPs for both conditions also intersect with the ones involving genes in the 22q11DS region. However, SNPs within this region were not overrepresented among the most significant SNPs from GWAS for both conditions. Notably, gene networks linked to the risk for both conditions suggest an involvement of biopathways related to cellular signaling and neuronal development.
RESUMEN
The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.