Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Glob Chang Biol ; 30(5): e17293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38687495

RESUMEN

Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress-response genes that might be co/cross-selected or co-transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run-off from glaciers could contribute to the release and spread of plasmid-related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.


Asunto(s)
Plásmidos , Plásmidos/genética , Regiones Árticas , Farmacorresistencia Bacteriana/genética , Svalbard , Farmacorresistencia Microbiana/genética , Virulencia/genética , Aguas Residuales/microbiología , Cubierta de Hielo/microbiología , Genes Bacterianos
2.
Biol Lett ; 20(6): 20230546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38869044

RESUMEN

Historical climate data indicate that the Earth has passed through multiple geological periods with much warmer-than-present climates, including epochs of the Miocene (23-5.3 mya BP) with temperatures 3-4°C above present, and more recent interglacial stages of the Quaternary, for example, Marine Isotope Stage 11c (approx. 425-395 ka BP) and Middle Holocene thermal maximum (7.5-4.2 ka BP), during which continental glaciers may have melted entirely. Such warm periods would have severe consequences for ice-obligate fauna in terms of their distribution, biodiversity and population structure. To determine the impacts of these climatic events in the Nordic cryosphere, we surveyed ice habitats throughout mainland Norway and Svalbard ranging from maritime glaciers to continental ice patches (i.e. non-flowing, inland ice subjected to deep freezing overwinter), finding particularly widespread populations of ice-inhabiting bdelloid rotifers. Combined mitochondrial and nuclear DNA sequencing identified approx. 16 undescribed, species-level rotifer lineages that revealed an ancestry predating the Quaternary (> 2.58 mya). These rotifers also displayed robust freeze/thaw tolerance in laboratory experiments. Collectively, these data suggest that extensive ice refugia, comparable with stable ice patches across the contemporary Norwegian landscape, persisted in the cryosphere over geological time, and may have facilitated the long-term survival of ice-obligate Metazoa before and throughout the Quaternary.


Asunto(s)
Rotíferos , Animales , Regiones Árticas , Noruega , Rotíferos/genética , Rotíferos/clasificación , Svalbard , Cubierta de Hielo , Filogenia , ADN Mitocondrial/genética , Ecosistema
3.
Mol Phylogenet Evol ; 178: 107634, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208696

RESUMEN

Tardigrada is an invertebrate phylum that often constitutes a dominant micrometazoan group on glaciers worldwide. We investigated tardigrades residing in surface ice above the equilibrium line altitude (ELA) on three temperate glaciers of New Zealand's Southern Alps. Morphological, morphometric and multilocus DNA analyses (CO1, 18S rRNA, 28S rRNA, ITS-2) revealed two new genera comprising four species, of which two are formally described here: Kopakaius gen. nov. nicolae sp. nov. and Kararehius gen. nov. gregorii sp. nov. The former is represented by three genetically distinct phyletic lineages akin to species. According to CO1, Kopakaius gen. nov. nicolae sp. nov. inhabits Whataroa Glacier only while the remaining two Kopakaius species occur on Fox and Franz Joseph Glaciers, suggesting low dispersal capabilities. Although morphological characteristics of the new genera could indicate affinity with the subfamily Itaquasconinae, phylogenetic analysis placed them confidently in the subfamily Diphasconinae. Kopakaius gen. nov. lack placoids in the pharynx similar with some Itaquasconinae, whereas dark pigmentation and claw shape aligns them with the glacier-obligate genus, Cryobiotus (subfamily Hypsibiinae), which is an example of parallel evolution. The second genus, Kararehius gen nov. could be classified as Adropion-like (subfamily Itaquasconinae), but differs greatly by genetics (placed in the subfamily Diphasconinae) as well as morphology (e.g., lack of septulum), exemplify deep stasis in Hypsibiidae. Our results suggest that glacier fragmentation during the Pleistocene triggered tardigrade speciation, making it a suitable model for studies on allopatric divergence in glacier meiofauna.


Asunto(s)
Tardigrada , Animales , Tardigrada/genética , Cubierta de Hielo , Filogenia , Nueva Zelanda , ARN Ribosómico 28S/genética
4.
J Phycol ; 59(5): 939-949, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572353

RESUMEN

Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.


Asunto(s)
Cianobacterias , Microbiota , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Clima Frío , Cianobacterias/metabolismo , Minerales/metabolismo , Agua
5.
Zootaxa ; 3790: 357-79, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24869872

RESUMEN

In four samples of mosses and mosses mixed with lichens collected in the Peruvian region of Cusco, 344 tardigrades, 78 free-laid eggs and six simplexes were found. In total, nine species were identified: Cornechiniscus lobatus, Echiniscus dariae, E. ollantaytamboensis, Isohypsibius condorcanquii sp. nov., Macrobiotus pisacensis sp. nov., Milnesium krzysztofi, Minibiotus intermedius, Paramacrobiotus intii sp. nov. and Pseudechiniscus ramazzottii ramazzottii. Isohypsibius condorcanquii sp. nov. is most similar to I. baldii, but differs mainly by the absence of ventral sculpture, the presence of the oral cavity armature, a different macroplacoid length sequence and a different shape of macroplacoids. The new species also differs from other congeners by a different dorsal sculpture, the absence of cuticular bars under the claws and the absence of eyes. Macrobiotus pisacensis sp. nov. differs from the most similar M. ariekammensis and M. kirghizicus by a different oral cavity armature, the presence of cuticular pores, details of egg morphology and some morphometric characters of both animals and eggs. Paramacrobiotus intii sp. nov. differs from most similar species of the genus by a different type of the oral cavity armature, details of egg morphology and some morphometric characters of both animals and eggs. In addition, we briefly discuss the tardigrade fauna of Peru, and propose a simple and economic system of describing relative lengths of pharyngeal macroplacoids. The system is especially useful in interspecific comparisons and differential diagnoses.


Asunto(s)
Biodiversidad , Tardigrada/ultraestructura , Animales , Briófitas , Perú
6.
J Hazard Mater ; 476: 135083, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38976963

RESUMEN

Glaciers are considered secondary sources of pollutants, including radioisotopes such as Cesium or Plutonium, with heightened concentrations compared to other ecosystems. The predicted melting of glaciers poses a substantial risk of releasing stored radioisotopes, yet understanding the glacier-specific factors influencing their concentration remains limited. This study investigates the relationship between glacier altitude, surface area, organic matter content in dark supraglacial sediment (cryoconite), precipitation, and activity concentrations of natural (210Pb) and anthropogenic radionuclides (137Cs and 241Am) across 19 Alpine glaciers. Results indicate that radioisotope concentrations depend on organic matter content in the cryoconite, highlighting the role of biotic-abiotic interactions in pollutant accumulation on glaciers. Moreover, 210Pb activity concentration decreases with glacier altitude, likely due to atmospheric variations in 222Rn. Water precipitation events, such as during peaks in 137Cs deposition and after the Chernobyl Nuclear Power Plant disaster, do not impact current activity concentrations. Importantly, radioisotope concentrations in cryoconite are higher on smaller glaciers. This directly supports the hypothesis that the cryoconite retains a significant share of radioisotopes stored in the ice during intensive melting. Since many small glaciers in the Alps are predicted to disappear within the next 50 years, we anticipate release of radioisotopes to mountain ecosystems might be higher than previously forecasted.

7.
Sci Total Environ ; 951: 175356, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39122024

RESUMEN

Glaciers are recognized as repositories for atmospheric pollutants, however, due to climate change and enhanced melting rates, they are rapidly transitioning from being repositories to secondary sources of such apollutants. Artificial radionuclides are one of the pollutants found on glaciers that efficiently accumulate onto glacier surfaces within cryoconite deposits; a dark, often biogenic sediment. This work provides information about the accumulation, distribution and sources of plutonium (Pu) isotopes in cryoconite samples from glaciers worldwide. Plutonium is an artificial radionuclide spread into the environment in the last decades as a consequence of nuclear test explosions, accidents and nuclear fuel re-processing. Samples collected from 49 glaciers across nine regions of Earth are considered. Activity concentrations of plutonium in cryoconite are orders of magnitude higher than in other environmental matrices typically used for environmental monitoring (e.g. lichens, mosses, soils and sediments), particularly in the Northern Hemisphere. Isotopic ratios indicate that plutonium contamination of cryoconite is dominated by the global signal of stratospheric fallout related to atmospheric nuclear tests. However, specific glaciers in Svalbard reveal a signature compatible with a contribution from the re-entry of the SNAP-9A satellite in 1964, which was equipped with a 238Pu radioisotope thermoelectric generator. Similarly, an excess of 238Pu is observed in cryoconite from the Exploradores Glacier (Chile). This could be associated with the November 1996 crash of the automatic Interplanetary Station "Mars '96" which was carrying a 238Pu thermoelectric generator. This is the first time ever that an isotopic evidence for this event is reported. These findings highlight the role that cryoconite can play in reconstructing the radioactive contamination history of different glaciated regions of the Earth.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39247954

RESUMEN

Glaciers host a variety of cold-adapted taxa, many of which have not yet been described. Interactions among glacier organisms are even less clear. Understanding ecological interactions is crucial to unravelling the functioning of glacier ecosystems, particularly in light of current glacier retreat. Through a review of the existing literature, we aim to provide a first overview of the biodiversity, primary production, trophic networks, and matter flow of a glacier ecosystem. We use the Forni Glacier (Central Italian Alps) - one of the best studied alpine glaciers in the world - as a model system for our literature review and integrate additional original data. We reveal the importance of allochthonous organic matter inputs, of Cyanobacteria and eukaryotic green algae in primary production, and the key role of springtails (Vertagopus glacialis) on the glacier surface in sustaining populations of two apex terrestrial predators: Nebria castanea (Coleoptera: Carabidae) and Pardosa saturatior (Araneae: Lycosidae). The cryophilic tardigrade Cryobiotus klebelsbergi is the apex consumer in cryoconite holes. This short food web highlights the fragility of nodes represented by invertebrates, contrasting with structured microbial communities in all glacier habitats. Although further research is necessary to quantify the ecological interactions of glacier organisms, this review summarises and integrates existing knowledge about the ecological processes on alpine glaciers and supports the importance of glacier-adapted organisms in providing ecosystem services.

9.
Sci Total Environ ; 949: 175109, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074753

RESUMEN

Glacier mice are peculiar rolling or stationary moss balls found on the surface of some glaciers. They may harbour an ecological habitat for cold-adapted invertebrates and microorganisms, but little is known about their potential to accumulate and disseminate harmful elements and substances. In this study, we investigate the presence of fallout radionuclides (137Cs, 238Pu, 239Pu, 240Pu, 210Pb) and heavy metals (Pb, As, Hg, Cd) in glacier mice and compare the results to bryophytes from adjacent glacier ecosystems. Samples were collected at Austerdalsbreen, a Norwegian outlet glacier from Jostedalsbreen ice cap. Maximum activity concentrations for bryophytes are 552 ± 12 Bq kg-1 for 137Cs, 3485 ± 138 Bq kg-1 for 210Pb, 0.0223 ± 0.065 Bq kg-1 for 238Pu and 4.34 ± 0.43 Bq kg-1 for 239+240Pu while maximum heavy metals concentrations are 70.5 mg kg-1 for Pb, 1.0 mg kg-1 for As, 1.6 mg kg-1 for Hg and 0.13 mg kg-1 for Cd. Maximum activity concentrations in cryconite are 1973.4 ± 5.0 Bq kg-1 for 137Cs, 3632 ± 593 Bq kg-1 for 210Pb, 0.51 ± 0.11 Bq kg-1 for 238Pu and 13.1 ± 1.4 Bq kg-1 for 239+240Pu and maximum heavy metal concentrations are 50.4 mg kg-1 for Pb, 3.4 mg kg-1 for As, 1.5 mg kg-1 for Hg and 0.082 mg kg-1 for Cd. We find that glacier mice show lower activity concentrations of radionuclides compared to cryoconite. The major source of plutonium isotopes is related to global fallout, whereas detected radio-cesium may be additionally affected by post-Chernobyl fallout to an unknown extent. Comparison between glacier surface and adjacent glacial habitats shows higher concentrations of heavy metals in glacier mice on the glacier ice surface and medial moraines compared to bryophytes in the glacier forefield. Glacier mice exported from a receding glacier may affect the cycling of radioactive and metal pollutants in developing proglacial ecosystems.


Asunto(s)
Cubierta de Hielo , Metales Pesados , Metales Pesados/análisis , Noruega , Cubierta de Hielo/química , Animales , Monitoreo del Ambiente , Ceniza Radiactiva/análisis , Briófitas/química , Radioisótopos , Radioisótopos de Cesio/análisis
10.
Zoological Lett ; 9(1): 22, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012802

RESUMEN

Phylum Tardigrada is represented by microscopic eight-legged panarthropods that inhabit terrestrial and marine environments. Although tardigrades are emerging model animals for areas of research including physiology, evolutionary biology, and astrobiology, knowledge of their external morphology remains insufficient. For instance, homologies between marine and terrestrial relatives largely remain unexplored. In the present study we provide detailed pictures of the head sensory organs in a new tardigrade, Ramazzottius groenlandensis sp. nov. Specimens were collected from a mixed moss and lichen sample on Ella Island, East Greenland. The new species differs from congeneric species in the presence of polygonal sculpturing on the dorsal cuticle, which is accentuated in the posterior region of the body, a lateral papilla on leg IV, and distinctive egg morphology. A Bayesian phylogenetic analysis (18S rRNA + 28S rRNA + COI) places the new species within the genus Ramazzottius with high confidence. Interestingly, the new species shows a full set of well-developed cephalic organs, which correspond to all sensory fields found in eutardigrades. Details on the full set of head organs were present only for heterotardigrades. The surface of these organs is covered with small pores, which presumably play a sensory role. This discovery suggests the homology of head sensory structures between heterotardigrades and eutardigrades, implying that the distinctive arrangement and positioning of sensory organs on the head is a plesiomorphic feature of tardigrades. Moreover, we find that the Ramazzottius oberhaeuseri morphotype forms a morphogroup, not a monophyletic species complex.

11.
Curr Opin Biotechnol ; 80: 102900, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764028

RESUMEN

Glaciers are ecosystems and they host active biological communities. Despite their remoteness, glaciers act as cold condensers where high precipitation rates and cold temperatures favor the deposition of pollutants. These contaminants include a broad range of substances, including legacy pollutants, but also compounds still largely used. Some of these compounds are monitored in the environment and their effects on the ecosystems are known, in contrast others can be defined as emerging pollutants since their presence and their impact on the environment are still poorly understood (e.g. microplastics, radionuclides). This review aim to provide an overview of the studies that have investigated the effects of pollutants on the supraglacial ecosystem so far. Despite the distribution of the pollutants in glacier environments has been discussed in several studies, no review paper has summarized the current knowledge on the effects of these substances on the ecological communities living in glacier ecosystems.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Cubierta de Hielo , Plásticos , Biota , Monitoreo del Ambiente
12.
Microbiol Spectr ; : e0100422, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36939373

RESUMEN

Cryoconite holes are small ponds present on the surface of most glaciers filled with meltwater and sediment at the bottom. Although they are characterized by extreme conditions, they host bacterial communities with high taxonomic and functional biodiversity. Despite that evidence for a potential niche for anaerobic microorganisms and anaerobic processes has recently emerged, the composition of the microbial communities of the cryoconite reported so far has not shown the relevant presence of anaerobic taxa. We hypothesize that this is due to the lower growth yield of anaerobes compared to aerobic microorganisms. In this work, we aim at evaluating whether the anaerobic bacterial community represents a relevant fraction of the biodiversity of the cryoconite and at describing its structure and functions. We collected sediment samples from cryoconite holes on the Forni Glacier (Italy) and sequenced both 16S rRNA amplicon genes and 16S rRNA amplicon transcripts at different times of the day along a clear summer day. Results showed that a relevant fraction of taxa has been detected only by 16S rRNA transcripts and was undetectable in 16S rRNA gene amplicons. Furthermore, in the transcript approach, anaerobic taxa were overrepresented compared with DNA sequencing. The metatranscriptomics approach was used also to investigate the expression of the main metabolic functions. Results showed the occurrence of syntrophic and commensalism relationships among fermentative bacteria, hydrogenothrophs, and consumers of fermentation end products, which have never been reported so far in cryoconite. IMPORTANCE Recent evidence disclosed the presence of a potential niche for anaerobic microorganisms and anaerobic processes in supraglacial sediments (cryoconite), but a detailed description of the structure and functions of the anaerobic population is still lacking. This work used rRNA and mRNA sequencing and demonstrated that anaerobes are very active in these environments and represent a relevant albeit neglected part of the ecosystem functions in these environments.

13.
Sci Rep ; 12(1): 14995, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056052

RESUMEN

Snow ecosystems are an important component of polar and mountainous regions, influencing water regime, biogeochemical cycles and supporting snow specific taxa. Although snow is considered to be one of the most unique, and at the same time a disappearing habitat, knowledge of its taxonomic diversity is still limited. It is true especially for micrometazoans appearing in snow algae blooming areas. In this study, we used morphological and molecular approaches to identify two tardigrade species found in green snow patches of Mt. Gassan in Japan. By morphology, light (PCM) and scanning electron microscopy (SEM), and morphometry we described Hypsibius nivalis sp. nov. which differs from other similar species by granular, polygonal sculpture on the dorsal cuticle and by the presence of cuticular bars next to the internal claws. Additionally, phylogenetic multilocus (COI, 18S rRNA, 28S rRNA) analysis of the second taxon, Hypsibius sp. identified by morphology as convergens-pallidus group, showed its affinity to the Hypsibiidae family and it is placed as a sister clade to all species in the Hypsibiinae subfamily. Our study shows that microinvertebrates associated with snow are poorly known and the assumption that snow might be inhabited by snow-requiring tardigrade taxa cannot be ruled out. Furthermore, our study contributes to the understanding subfamily Hypsibiinae showing that on its own the morphology of specimens belonging to convergens-pallidus group is insufficient in establishing a true systematic position of specimens.


Asunto(s)
Tardigrada , Animales , Ecosistema , Japón , Filogenia , ARN Ribosómico 28S , Tardigrada/genética
14.
PLoS One ; 17(1): e0262039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35020747

RESUMEN

Insights into biodiversity and trophic webs are important for understanding ecosystem functions. Although the surfaces of glaciers are one of the most productive and biologically diverse parts of the cryosphere, the links between top consumers, their diet and microbial communities are poorly understood. In this study, for the first time we investigated the relationships between bacteria, fungi and other microeukaryotes as they relate to tardigrades, microscopic metazoans that are top consumers in cryoconite, a biologically rich and productive biogenic sediment found on glacier surfaces. Using metabarcoding (16S rDNA for bacteria, ITS1 for fungi, and 18S rDNA for other microeukaryotes), we analyzed the microbial community structures of cryoconite and compared them with the community found in both fully fed and starved tardigrades. The community structure of each microbial group (bacteria, fungi, microeukaryotes) were similar within each host group (cryoconite, fully fed tardigrades and starved tardigrades), and differed significantly between groups, as indicated by redundancy analyses. The relative number of operational taxonomic units (ZOTUs, OTUs) and the Shannon index differed significantly between cryoconite and tardigrades. Species indicator analysis highlighted a group of microbial taxa typical of both fully fed and starved tardigrades (potential commensals), like the bacteria of the genera Staphylococcus and Stenotrophomonas, as well as a group of taxa typical of both cryoconite and fully fed tardigrades (likely part of the tardigrade diet; bacteria Flavobacterium sp., fungi Preussia sp., algae Trebouxiophyceae sp.). Tardigrades are consumers of bacteria, fungi and other microeukaryotes in cryoconite and, being hosts for diverse microbes, their presence can enrich the microbiome of glaciers.


Asunto(s)
Cubierta de Hielo
15.
Sci Total Environ ; 814: 152656, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34954174

RESUMEN

This study is a first survey of the occurrence of artificial (137Cs, 241Am, 207Bi, Pu isotopes) and natural (210Pb, 228Ac, 214Bi, 40K) radionuclides in Norwegian cryoconite. Cryoconite samples were collected before (12 samples) and after (5 samples) a rainfall event, after which 7 cryoconite holes dissapeared. The concentrations of radionuclides in cryoconite samples from the Blåisen Glacier are compared with data from the Arctic and Alpine glaciers. Cryoconite samples from the studied glacier had extremely high activity concentrations of 137Cs, 241Am, 207Bi and 239+240Pu (up to 25,000 Bq/kg, 58 Bq/kg, 13 Bq/kg and 131 Bq/kg, respectively) and also high concentrations of organic matter (OM), comparing to other Scandinavian and Arctic glaciers, reaching up to ~40% of total mass. The outstandingly high concentrations of 137Cs, 241Am, Pu isotopes, and 207Bi on the Blåisen Glacier are primarily related to bioaccumulation of radionuclides in organic-rich cryoconite and might be enhanced by additional transfers of contamination from the tundra by lemmings during their population peaks. The presumed influence of intense rainfall on radionuclide concentrations in the cryoconite was not confirmed.


Asunto(s)
Cubierta de Hielo , Radiactividad , Regiones Árticas
16.
Sci Total Environ ; 807(Pt 2): 150874, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627905

RESUMEN

Cryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied. The major purpose of our study is the presentation and description of morphological diversity, chemical and photoautotrophs composition, and organic matter content of cryoconite sampled from 33 polar and mountain glaciers around the globe. Observations revealed that cryoconite is represented by various morphologies including loose and granular forms. Granular cryoconite includes smooth, rounded, or irregularly shaped forms; with some having their surfaces covered by cyanobacteria filaments. The occurrence of granules increased with the organic matter content in cryoconite. Moreover, a major driver of cryoconite colouring was the concentration of organic matter and its interplay with minerals. The structure of cyanobacteria and algae communities in cryoconite differs between glaciers, but representatives of cyanobacteria families Pseudanabaenaceae and Phormidiaceae, and algae families Mesotaeniaceae and Ulotrichaceae were the most common. The most of detected cyanobacterial taxa are known to produce polymeric substances (EPS) that may cement granules. Organic matter content in cryoconite varied between glaciers, ranging from 1% to 38%. The geochemistry of all the investigated samples reflected local sediment sources, except of highly concentrated Pb and Hg in cryoconite collected from European glaciers near industrialized regions, corroborating cryoconite as element-specific collector and potential environmental indicator of anthropogenic activity. Our work supports a notion that cryoconite may be more than just simple sediment and instead exhibits complex structure with relevance for biodiversity and the functioning of glacial ecosystems.


Asunto(s)
Efectos Antropogénicos , Cubierta de Hielo , Ecosistema , Humanos , Minerales
17.
Sci Rep ; 11(1): 5973, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727649

RESUMEN

Although studies on snow algae and macroinvertebrates have been frequently conducted on snow patches, only few surveys have been focused on microinvertebrates which reach high biomass and play various trophic roles in other cold habitats. The aims of this study were (1) to search for microinvertebrates in seasonal surface snow patches located on the slope of Mt. Gassan, in northern Japan, and (2) to identify factors determining their distribution associated with snow algal blooms of various colorations (orange, green, and golden-brown) collected from the same sampling site over two seasons (2018, 2019). Microscopic observation revealed presence of two major groups of microinvertebrates: Tardigrada and Rotifera. They were concentrated in green snow colored by blooms of Chloromonas sp. in comparison to orange or golden-brown snow and only a few were found in white snow. Mean body length of tardigrades increased throughout the melt season, their intestine content was green and they laid eggs on colored snow. These results suggest that tardigrades preferentially grew and reproduced on green snow patches. Population densities of tardigrades, rotifers and concentration of chlorophyll a were significantly correlated. Our study indicates that green snow patches in temperate mountainous forests constitute important and unique low-temperature ecosystems for microinvertebrates. Snow covered by algae is an unrecognized novel habitats for tardigrades and rotifers.

18.
Sci Rep ; 11(1): 3898, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594128

RESUMEN

Glacier ice is an extreme environment in which most animals cannot survive. Here we report the colonization of high elevation, climate-threatened glaciers along New Zealand's southwestern coast by species of Arthropoda, Nematoda, Platyhelminthes, Rotifera and Tardigrada. Based on DNA barcoding and haplotype-inferred evidence for deep genetic variability, at least 12 undescribed species are reported, some of which have persisted in this niche habitat throughout the Pleistocene. These findings identify not only an atypical biodiversity hotspot but also highlight the adaptive plasticity of microinvertebrate Animalia.

19.
Sci Rep ; 10(1): 9122, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499591

RESUMEN

Tardigrades constitute one of the most important group in the challenging Antarctic terrestrial ecosystem. Living in various habitats, tardigrades play major roles as consumers and decomposers in the trophic networks of Antarctic terrestrial and freshwater environments; yet we still know little about their biodiversity. The Eutardigrada is a species rich class, for which the eggshell morphology is one of the key morphological characters. Tardigrade egg morphology shows a diverse appearance, and it is known that, despite rare, intraspecific variation is caused by seasonality, epigenetics, and external environmental conditions. Here we report Dactylobiotus ovimutans sp. nov. from King George Island, Antarctica. Interestingly, we observed a range of eggshell morphologies from the new species, although the population was cultured under controlled laboratory condition. Thus, seasonality, environmental conditions, and food source are eliminated, leaving an epigenetic factor as a main cause for variability in this case.


Asunto(s)
Tardigrada/anatomía & histología , Animales , Regiones Antárticas , Biodiversidad , Cáscara de Huevo/anatomía & histología , Microscopía Electrónica de Rastreo
20.
Sci Total Environ ; 716: 137022, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32059297

RESUMEN

The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to ß-lactams (blaSHV, blaTEM, blaOXA, blaCMY), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.


Asunto(s)
Cubierta de Hielo , Antibacterianos , Regiones Árticas , Farmacorresistencia Microbiana , Ecosistema , Groenlandia , Integrones , Svalbard
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA