Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Ultrasound Med ; 43(6): 1131-1141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38414281

RESUMEN

OBJECTIVES: Diabetes mellitus is a complex heterogenous metabolic disease that significantly affects the world population. Although many treatments exist, including medications such as metformin, sulfonylureas, and glucagon-like peptide-1 (GLP) receptor agonist, there is growing interest in finding alternative methods to noninvasively treat this disease. It has been previously shown that low-intensity ultrasound stimulation of pancreatic ß-cells in mice can elicit insulin secretion as a potential treatment for this disease. This is desirable as therapeutic ultrasound has the ability to induce bioeffects while selectively focusing deep within tissues, allowing for modulation of hormone secretion in the pancreas to mitigate insufficient levels of insulin. METHODS: Exactly 800 kHz ultrasound with intensity 0.5 W/cm2 was administered 5 minutes continuously, that is, 100% duty cycle, to donor pancreatic human islets, followed by 1 hour incubation and RT-qPCR to assess the effect of ultrasound stimulation on gene expression. The genes were insulin (INS), glucagon (Glu), amylin (Amy), and binding immunoglobulin protein (BiP). Nine donor pancreatic human islets were used to assess insulin and glucagon secretion, while eight samples were used for amylin and BiP. Fold change (FC) was calculated to analyze the effect of ultrasound stimulation on the gene expression of the donor islet cells. High-glucose and thapsigargin-treated islets were utilized as positive controls. Cell viability testing was done using a Trypan Blue Exclusion Test. RESULTS: Ultrasound stimulation did not cause a statistically significant upregulation in any of the tested genes (INS FC = 1.15, P-value = .5692; Glu FC = 1.60, P-value = .2231; Amy FC, P-value = .2863; BiP FC = 2.68, P-value = .3907). CONCLUSIONS: The results of this study show that the proposed ultrasound treatment parameters do not appear to significantly affect gene expression of any gene tested.


Asunto(s)
Insulina , Islotes Pancreáticos , Terapia por Ultrasonido , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Terapia por Ultrasonido/métodos , Glucagón , Expresión Génica/efectos de los fármacos , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología
2.
J Ultrasound Med ; 43(1): 127-136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37842972

RESUMEN

OBJECTIVES: Topically applied macromolecules have the potential to provide vision-saving treatments for many of the leading causes of blindness in the United States. The aim of this study was to determine if ultrasound can be applied to increase transcorneal drug delivery of macromolecules without dangerously overheating surrounding ocular tissues. METHODS: Dissected corneas of adult rabbits were placed in a diffusion cell between a donor compartment filled with a solution of macromolecules (40, 70 kDa, or 150 kDa) and a receiver compartment. Each cornea was exposed to the drug solution for 60 minutes, with the experimental group receiving 5 minutes of continuous ultrasound or 10 minutes of pulsed ultrasound at a 50% duty cycle (pulse repetition frequency of 500 ms on, 500 ms off) at the beginning of treatment. Unfocused circular ultrasound transducers were operated at 0.5 to 1 W/cm2 intensity and at 600 kHz frequency. RESULTS: The greatest increase in transcorneal drug delivery seen was 1.2 times (P < .05) with the application of pulsed ultrasound at 0.5 W/cm2 and 600 kHz for 10 minutes with 40 kDa macromolecules. Histological analysis revealed structural damage mostly in the corneal epithelium, with most damage occurring at the epithelial surface. CONCLUSIONS: This study suggests that ultrasound may be used for enhancing transcorneal delivery of macromolecules of lower molecular weights. Further research is needed on the long-term effects of ultrasound parameters used in this study on human ocular tissues.


Asunto(s)
Córnea , Terapia por Ultrasonido , Animales , Humanos , Conejos , Córnea/diagnóstico por imagen , Córnea/metabolismo , Ultrasonografía , Ondas Ultrasónicas , Permeabilidad
3.
J Ultrasound Med ; 42(8): 1699-1707, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36723381

RESUMEN

OBJECTIVES: Our previous published studies have focused on safety and effectiveness of using therapeutic ultrasound (TUS) for treatment of type 2 diabetes mellitus (T2DM) in preclinical models. Here we present a set of simulation studies to explore potential ultrasound application schemes that would be feasible in a clinical setting. METHODS: Using the multiphysics modeling tool OnScale, we created two-dimensional (2D) models of the human abdomen from CT images captured from one normal weight adolescent patient, and one obese adolescent patient. Based on our previous studies, the frequency of our TUS was 1 MHz delivered from a planar unfocused transducer. We tested five different insonation angles, as well as four ultrasound intensities combined with four different duty factors and five durations of application to explore how these variables effect the peak pressure and temperature delivered to the pancreas as well as surrounding tissue in the model. RESULTS: We determined that ultrasound applied directly from the anterior of the patient abdomen at 5 W/cm2 delivered consistent acoustic pressures to the pancreas at the levels which we have previously found to be effective at inducing an insulin release from preclinical models. CONCLUSIONS: Our modeling work indicates that it may be feasible to non-invasively apply TUS in clinical treatment of T2DM.


Asunto(s)
Cavidad Abdominal , Diabetes Mellitus Tipo 2 , Obesidad Infantil , Humanos , Adolescente , Insulina/uso terapéutico , Páncreas/diagnóstico por imagen
4.
J Ultrasound Med ; 40(12): 2561-2570, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33491798

RESUMEN

OBJECTIVE: Delivery of therapeutic agents to the cornea is a difficult task in the treatment of parasitic keratitis. In this study, we looked at using different combinations of ultrasound parameters to enhance corneal permeability to polyhexamethylene biguanide (PHMB), a clinically available ophthalmic antiparasitic formulation. METHODS: Permeability of PHMB was investigated in vitro using a standard diffusion cell setup. Continuous or 25% duty-cycle ultrasound was used at frequencies of 400 or 600 kHz, intensities of 0.5 or 0.8 W/cm2 , and exposure times ranging from 1 to 5 minutes. Structural changes in the cornea were examined using light microscopy. RESULTS: Ultrasound exposure produced increases in transcorneal delivery in every treatment parameter combination when compared to the sham treatment. The highest increase was 2.36 times for 5 minutes of continuous ultrasound at a frequency of 600 kHz and an intensity of 0.5 W/cm2 with statistical significance (p <.001). Histological analysis showed that ultrasound application only caused structural changes in the corneal epithelium, with most damage being at the surface layers. CONCLUSIONS: This study suggests the possibility of therapeutic ultrasound as a novel drug delivery technique for the treatment of parasitic keratitis. Further studies are needed to examine the thermal effects of these proposed ultrasound applications and the long-term viability of this treatment.


Asunto(s)
Biguanidas , Terapia por Ultrasonido , Córnea/diagnóstico por imagen , Sistemas de Liberación de Medicamentos
5.
J Ultrasound Med ; 40(12): 2709-2719, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33595146

RESUMEN

OBJECTIVES: Our previously published studies showed the potential of therapeutic ultrasound (US) as a novel non-pharmacological alternative for the treatment of secretory deficiencies in type 2 diabetes. Despite showing enhanced insulin release from beta cells, these studies did not explore the potential effects of US treatment on other cells in the islets of Langerhans such as glucagon-secreting alpha cells or acinar cells of the exocrine pancreas. METHODS: We applied US parameters found capable of safely stimulating insulin secretion from pancreatic beta cells (f = 800 kHz, ISPTA  = 0.5-1 W/cm2 , 5 minutes) to a diced rabbit pancreas model in culture plates (n = 6 per group). Released quantities of insulin and glucagon in response to US treatment were measured by collecting aliquots of the extracellular medium prior to the start of the treatment (t = 0 minute), immediately after treatment (t = 5 minutes) and 30 minutes after the end of treatment (t = 35 minutes). Potential release of digestive enzyme alpha-amylase as a result of US treatment was evaluated in rabbit pancreas experiments. Preliminary studies were also performed in a small number of human pancreatic islets in culture plates (n = 3 per group). The general integrity of the US-treated rabbit pancreatic tissue and human pancreatic islets was evaluated through histological analysis. RESULTS: While sham-treated rabbit pancreas samples showed decreased extracellular insulin content, there was an increase in insulin release at t = 5 minutes from samples treated with US at 800 kHz and 1 W/cm2 (P <.005). Furthermore, no further insulin release was detected at t = 35 minutes. No statistically significant difference in extracellular glucagon and alpha-amylase concentrations was observed between US-treated and sham rabbit pancreas groups. Preliminary studies in human islets appeared to follow trends observed in rabbit pancreas studies. Islet and other pancreatic tissue integrity did not appear to be affected by the US treatment. CONCLUSION: A potential US-based strategy for enhanced insulin release would require optimization of insulin secretion from pancreatic beta cells while minimizing glucagon and pancreatic enzyme secretions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Animales , Insulina , Páncreas/diagnóstico por imagen , Conejos , alfa-Amilasas
6.
J Ultrasound Med ; 37(7): 1743-1752, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29288596

RESUMEN

OBJECTIVES: The aim of our study was to determine the effectiveness of using ultrasound (US) to increase the permeability of the nail, with the goal of improving outcomes in the treatment of onychomycosis. METHODS: Porcine nails were used because of their similarity to human nails. A hydrophilic blue dye was used as a drug-mimicking compound. Two sets of experiments were performed: luminosity experiments to assess the dye levels inside the nail after US and sham treatments and diffusion cell experiments for determination of changes in nail permeability due to US application. In both sets of experiments, planar US transducers were used to sonicate the nails at frequencies of 400, 600, and 800 kHz and 1 MHz, an intensity of 1 W/cm2 , and a duration of 5 min in a continuous mode. Modeling studies were also performed to assess the safety of US application to the human toe for later clinical studies. RESULTS: In the luminosity experiments, application of US at frequencies of 600 and 800 kHz led to statistically significant results (P < .05), with an increase in dye delivery into the nail of up to 95% compared to control values. The diffusion cell results found statistical significance (P < .05) at all applied frequencies, with up to a 70% increase in the nail permeability compared to the control. Safety modeling studies found a maximal temperature increase of 4.4 °C in the bone. CONCLUSIONS: Our proposed US method may offer an alternative for improved treatment of onychomycosis. The current maximal temperature increase was found to be at the safety limit, and so pulsing and other alternatives will be investigated to minimize this temperature increase.


Asunto(s)
Colorantes/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Pezuñas y Garras/metabolismo , Onicomicosis , Sonicación/métodos , Administración Tópica , Animales , Modelos Animales de Enfermedad , Permeabilidad , Porcinos
7.
Exp Eye Res ; 100: 17-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22564972

RESUMEN

Retinoblastoma is the most common type of intraocular tumors in children. Currently, with early detection and improved systemic chemo-adjuvant therapies, treatment paradigm has shifted from survival to globe salvation/vision preservation. The objective of our work has been to explore the possible application of focused ultrasound (FUS) for targeted drug delivery in the posterior pole retinoblastoma. Specifically, theoretical models were implemented to evaluate the feasibility of using FUS to generate localized hyperthermia in retinal tumor areas, for potential triggering the chemotherapeutic agent deployment from heat-sensitive drug carriers. In-vitro experiments were conducted in tissue-mimicking phantoms with embedded excised rabbit eyes to validate the reliability of the modeling results. After confirming the reliability of our model, various FUS transducer parameters were investigated to induce maximal hyperthermia coverage in the tumor, while sparing adjacent eye structures (e.g. the lens). The evaluated FUS parameters included operating frequency, total acoustic power, geometric dimensions, transducer f-number, standoff distance, as well as different pulsing scenarios. Our modeling results suggest that the most suitable ultrasound frequency for this type of treatments was in the range of 2-3.5 MHz depending on the size of retinoblastoma. Appropriate transducer f-number (close to 1) and standoff distance could be selected to minimize the risks of over-heating undesired regions. With the total acoustic power of 0.4 W, 56.3% of the tumor was heated to hyperthermic temperature range (39-44 °C) while the temperature in lens was maintained below 41 °C. In conclusion, FUS-induced hyperthermia for targeted drug delivery may be a viable option in treatments of juxta-foveal or posterior pole retinoblastomas. Future in-vivo studies will allow us to determine the effectiveness and safety of the proposed approach.


Asunto(s)
Antineoplásicos/administración & dosificación , Hipertermia Inducida , Modelos Teóricos , Neoplasias de la Retina/terapia , Retinoblastoma/terapia , Terapia por Ultrasonido , Animales , Temperatura Corporal , Terapia Combinada , Sistemas de Liberación de Medicamentos , Estudios de Factibilidad , Humanos , Fantasmas de Imagen , Conejos , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Transductores
8.
Med Phys ; 39(7): 4274-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22830761

RESUMEN

PURPOSE: To study how pressure pulses affect nerves through mechanisms that are neither thermal nor cavitational, and investigate how the effects are related to cumulative radiation-force impulse (CRFI). Applications include traumatic brain injury and acoustic neuromodulation. METHODS: A simple neural model consisting of the giant axon of a live earthworm was exposed to trains of pressure pulses produced by an 825 kHz focused ultrasound transducer. The peak negative pressure of the pulses and duty cycle of the pulse train were controlled so that neither cavitation nor significant temperature rise occurred. The amplitude and conduction velocity of action-potentials triggered in the worm were measured as the magnitude of the pulses and number of pulses in the pulse trains were varied. RESULTS: The functionality of the axons decreased when sufficient pulse energy was applied. The level of CRFI at which the observed effects occur is consistent with the lower levels of injury observed in this study relative to blast tubes. The relevant CRFI values are also comparable to CRFI values in other studies showing measureable changes in action-potential amplitudes and velocities. Plotting the measured action-potential amplitudes and conduction velocities from different experiments with widely varying exposure regimens against the single parameter of CRFI yielded values that agreed within 21% in terms of amplitude and 5% in velocity. A predictive model based on the assumption that the temporal rate of decay of action-potential amplitude and velocity is linearly proportional the radiation force experienced by the axon predicted the experimental amplitudes and conduction velocities to within about 20% agreement. CONCLUSIONS: The functionality of axons decreased due to noncavitational mechanical effects. The radiation force, possibly by inducing changes in ion-channel permeability, appears to be a possible mechanism for explaining the observed degradation. The CRFI is also a promising parameter for quantifying neural bioeffects during exposure to pressure waves, and for predicting axon functionality.


Asunto(s)
Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Axones/fisiología , Axones/efectos de la radiación , Modelos Neurológicos , Conducción Nerviosa/fisiología , Conducción Nerviosa/efectos de la radiación , Animales , Células Cultivadas , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Ondas de Choque de Alta Energía , Oligoquetos , Dosis de Radiación
9.
J Acoust Soc Am ; 131(6): 4283-91, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22712903

RESUMEN

Infrared (IR) thermography is a technique that has the potential to rapidly and noninvasively determine the intensity fields of ultrasound transducers. In the work described here, IR temperature measurements were made in a tissue phantom sonicated with a high-intensity focused ultrasound (HIFU) transducer, and the intensity fields were determined using a previously published mathematical formulation relating intensity to temperature rise at a tissue/air interface. Intensity fields determined from the IR technique were compared with those derived from hydrophone measurements. Focal intensities and beam widths determined via the IR approach agreed with values derived from hydrophone measurements to within a relative difference of less than 10%, for a transducer with a gain of 30, and about 13% for a transducer with a gain of 60. At axial locations roughly 1 cm in front (pre-focal) and behind (post-focal) the focus, the agreement with hydrophones for the lower-gain transducer remained comparable to that in the focal plane. For the higher-gain transducer, the agreement with hydrophones at the pre-focal and post-focal locations was around 40%.


Asunto(s)
Termografía/métodos , Terapia por Ultrasonido/instrumentación , Ultrasonido , Rayos Infrarrojos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Espectrofotometría Infrarroja , Factores de Tiempo , Transductores
10.
Ultrasound Med Biol ; 48(6): 1078-1094, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304006

RESUMEN

To the best of our knowledge, therapeutic ultrasound (TUS) is thus far an unexplored means of delivering mechanical stimulation to cardiomyocyte cultures, which is necessary to engineer a more mature cardiomyocyte phenotype in vitro. Spectral ultrasound (SUS) may provide a way to non-invasively, non-disruptively and inexpensively monitor growth and change in cell cultures over long periods. Compared with other measurement methods, SUS as an acoustic measurement tool will not be affected by an acoustic therapy, unlike electrical measurement methods, in which motion caused by acoustic therapy can affect measurements. Further SUS has the potential to provide functional as well as morphological information in cell cultures. Human induced pluripotent stem cell cardiomyocytes (iPS-CMs) were imaged with calcium fluorescence microscopy while TUS was being applied. TUS was applied at 600 kHz and 1, 3.4 and 6 W/cm2 for a continuous 1 s pulse. Measures of the instantaneous beat frequency, repolarization rate and calcium spike amplitude were calculated from the fluorescence data. At 600 kHz, TUS at 1 and 6 W/cm2 had significant effects on the shortening of both the repolarization rate and instantaneous beat rate of the iPS-CMs (p < 0.05), while TUS at 3.4 and 6 W/cm2 had significant effects on the shortening of the calcium spike amplitude (p < 0.05). Three SUS measures and one gray-level measure were captured from the iPS-CM monolayers while they were simultaneously being imaged with calcium-labeled confocal microscopy. The gray-level measure performed the best of all SUS measures; however, it was not reliable enough to produce a consistent determination of the beat rate of the cell. Finally, SUS measures were captured using three different transducers while simultaneously applying TUS. A center-of-mass (COM) measure calculated from the wavelet transform scalogram of the time-averaged radiofrequency data revealed that SUS was able to detect a change in the frequency content of the reflected ultrasound at 1 and 6 W/cm2 before and after ultrasound application (p < 0.05), showing promise for the ability of SUS to measure changes in the beating behavior of iPS-CMs. Overall, SUS is promising as a method for constant monitoring of dynamic cell and tissue culture and growth.


Asunto(s)
Células Madre Pluripotentes Inducidas , Terapia por Ultrasonido , Calcio , Humanos , Miocitos Cardíacos , Ultrasonografía
11.
Cornea ; 41(7): 894-900, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34759205

RESUMEN

PURPOSE: Transcorneal drug delivery is hindered by ocular physical and biochemical properties, such as tear production, the epithelial layer of the cornea, and blinking. The aim of this study was to determine whether ultrasound can be applied to increase the transcorneal drug delivery of natamycin used in the treatment of fungal keratitis without dangerously overheating the surrounding ocular tissues. METHODS: To verify the safety of various sets of ultrasound parameters, modeling studies were conducted using OnScale, an ultrasonic wave modeling software. Ultrasound parameters determined optimal for ocular tissue safety were used in a laboratory setting in a jacketed Franz diffusion cell setup. Histological images of the cross-section of the corneas used in experiments were examined for cell damage under a microscope. RESULTS: Increases in transcorneal drug delivery were seen in every treatment parameter combination when compared with the sham treatment. The highest increase was 4.0 times for 5 minutes of pulsed ultrasound at a 25% duty cycle and a frequency of 400 kHz and an intensity of 0.5 W/cm 2 with statistical significance ( P < 0.001). Histological analysis revealed structural damage only in the corneal epithelium, with most damage being at the epithelial surface. CONCLUSIONS: This study suggests that ultrasound is a safe, effective, and minimally invasive treatment method for enhancing the transcorneal drug delivery of natamycin. Further research is needed into the long-term effects of ultrasound parameters used in this study on human ocular tissues.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Córnea/metabolismo , Úlcera de la Córnea/diagnóstico por imagen , Úlcera de la Córnea/tratamiento farmacológico , Úlcera de la Córnea/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Humanos , Natamicina/uso terapéutico
12.
Transl Vis Sci Technol ; 11(8): 23, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998058

RESUMEN

Purpose: The objective of this study was to utilize therapeutic ultrasound in enhancing delivery of topical macromolecules into the cornea. Methods: Rabbit corneas were dissected and placed in a diffusion cell with a small ultra-red fluorescent protein (smURFP; molecular weight of 32,000 Da) as a macromolecule solution. The corneas were treated with continuous ultrasound application at frequencies of 400 or 600 kHz and intensities of 0.8 to 1.0 W/cm2 for 5 minutes, or sham-treated. Fluorescence imaging of the cornea sections was used to observe the delivery of macromolecules into individual epithelial cells. Spectrophotometric analysis at smURFP maximal absorbance of 640 nm was done to determine the presence of macromolecules in the receiver compartment. Safety of ultrasound application was studied through histology analysis. Results: Ultrasound-treated corneas showed smURFP delivery into epithelial cells by fluorescence in the cytoplasm, whereas sham-treated corneas lacked any appreciable fluorescence in the individual cells. The sham group showed 0% of subcellular penetration, whereas the 400 kHz ultrasound-treated group and 600 kHz ultrasound-treated group showed 31% and 57% of subcellular penetration, respectively. Spectrophotometry measurements indicated negligible presence of smURFP macromolecules in the receiver compartment solution in both the sham and ultrasound treatment groups, and these macromolecules did not cross the entire depth of the cornea. Histological studies showed no significant corneal damage due to ultrasound application. Conclusions: Therapeutic ultrasound application was shown to increase the delivery of smURFP macromolecules into the cornea. Translational Relevance: Our study offers a clinical potential for a minimally invasive macromolecular treatment of corneal diseases.


Asunto(s)
Enfermedades de la Córnea , Terapia por Ultrasonido , Animales , Córnea/diagnóstico por imagen , Córnea/metabolismo , Enfermedades de la Córnea/metabolismo , Fluorescencia , Sustancias Macromoleculares/metabolismo , Conejos
13.
J Ultrasound Med ; 30(12): 1723-30, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22124008

RESUMEN

A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative.


Asunto(s)
Colorantes/administración & dosificación , Colorantes/farmacocinética , Quimioterapia Asistida por Computador/instrumentación , Electroporación/instrumentación , Pezuñas y Garras/metabolismo , Uñas/metabolismo , Sonicación/instrumentación , Animales , Perros , Quimioterapia Asistida por Computador/métodos , Electroporación/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Sonicación/métodos , Transductores
14.
J Acoust Soc Am ; 130(1): 599-609, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21786925

RESUMEN

Hyperthermic temperatures, with potential applications in drug/gene delivery and chemo/radio sensitization, may be generated in biological tissues by applying focused ultrasound (FUS) in pulsed mode. Here, a strategy for optimizing FUS exposures for hyperthermia applications is proposed based on theoretical simulations and in vitro experiments. Initial simulations were carried out for tissue-mimicking phantoms, and subsequent thermocouple measurements allowed for validation of the simulation results. Advanced simulations were then conducted for an ectopic, murine xenograft tumor model. The ultrasound exposure parameters investigated in this study included acoustic power (3-5 W), duty cycle (DC) (10%-50%), and pulse repetition frequency (PRF) (1-5 Hz), as well as effects of tissue perfusion. The thermocouple measurements agreed well with simulation outcomes, where differences between the two never exceeded 1.9%. Based on a desired temperature range of 39-44 °C, optimal tumor coverage (40.8% of the total tumor volume) by a single FUS exposure at 1 MHz was achieved with 4 W acoustic power, 50% DC, and 5 Hz PRF. Results of this study demonstrate the utility of a proposed strategy for optimizing pulsed-FUS induced hyperthermia. These strategies can help reduce the requirement for empirical animal experimentation, and facilitate the translation of pulsed-FUS applications to the clinic.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Hipotermia Inducida , Neoplasias Experimentales/tratamiento farmacológico , Ultrasonido , Animales , Simulación por Computador , Liposomas , Ratones , Modelos Teóricos , Neoplasias Experimentales/patología , Fantasmas de Imagen , Reproducibilidad de los Resultados , Factores de Tiempo , Carga Tumoral , Ultrasonido/instrumentación , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Emerg Med ; 41(1): 64-73, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20189743

RESUMEN

BACKGROUND: Hemorrhage from wounds in the extremities is the leading cause of preventable death on the battlefield. To successfully treat these injuries, the exact source of bleeding must be localized. OBJECTIVE: The purpose of this study was to determine the feasibility of using Doppler ultrasound to precisely detect and localize peripheral vascular bleeding. METHODS: Injuries were produced in common femoral arteries (diameter of ∼5 mm) of 28 pigs in vivo. Single puncture injuries were produced using 6 French (F) (n = 10), 9 F (n = 22), and 12 F (n = 12) catheters. In addition, multiple punctures were made (using 6 F and 9 F catheters) in eight common femoral arteries to simulate bleeding from multiple injuries. Finally, laceration injuries were produced using a scalpel in 10 femoral vessels. RESULTS: In color Doppler images, bleeding was observed as a turbulent jet flow originating from the injury site in the vessel. This jet flow had checkered red-blue color pattern at the bleeding site, as opposed to a uniform color pattern in an intact artery. Peak systolic velocity at the injury site, measured using pulsed Doppler, was elevated to up to 152.0 ± 81.6 cm/s, as compared to 78.8 ± 17.5 cm/s in normal arteries. Further, end diastolic velocity increased from 6.1 ± 4.9 cm/s before the injury to up to 59.1 ± 33.1 cm/s after the injury. Resistance index was significantly lower (0.6 for 9 F and 12 F punctures, and 0.8 for 6 F punctures) at the bleeding site in injured arteries as compared to the resistance index of intact arteries (of 0.9). CONCLUSION: Our results showed a characteristic change in the systolic and diastolic velocities, as well as resistance indices at the injury site in peripheral arteries. These findings may serve as groundwork for development of automated bleeding detection and localization methods, and facilitate various hemorrhage control treatments.


Asunto(s)
Arteria Femoral/lesiones , Hemorragia/diagnóstico por imagen , Ultrasonografía Doppler , Heridas Penetrantes/diagnóstico por imagen , Animales , Velocidad del Flujo Sanguíneo/fisiología , Modelos Animales de Enfermedad , Estudios de Factibilidad , Traumatismo Múltiple/diagnóstico por imagen , Porcinos , Ultrasonografía Doppler/métodos , Resistencia Vascular/fisiología
16.
Ultrasound Med Biol ; 47(3): 666-678, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33257101

RESUMEN

Ultrasound has previously been reported to produce a reversible stimulatory effect in cultured rat beta cells. Here, we quantified and assessed dynamic metabolic changes in an in situ pancreatic slice model evoked by ultrasound application. After plating, pancreas slices were imaged using a confocal microscope at 488 and 633 nm to image lipodamine dehydrogenase (Lip-DH) autofluorescence and a far red fluorescence, respectively. Ultrasound was applied at intensities of 0.5 and 1 W/cm2 at both 800 kHz and 1 MHz. Additionally, 800 kHz at 1 W/cm2 was applied in a pulsing scheme. No ultrasound (control) and glucose application experiments were performed. A difference in fluorescence signal before and after treatment application was the metric for analysis. Comparison of experimental groups using far red fluorescence revealed significant differences between all experimental groups and control in the islet (p < 0.05) and between all ultrasound experimental groups and control (p < 0.05) in pancreatic exocrine tissue. However, this difference in response between control and glucose did not exist in the exocrine tissue. We also observed using Lip-DH autofluorescence that glucose produces a significantly increased metabolic response in islet tissue compared with exocrine tissue (p < 0.05). Pulsed ultrasound appeared to increase metabolic activity in the pancreatic slice in a more consistent manner compared with continuous ultrasound application. Our results indicate that therapeutic ultrasound may have a stimulatory metabolic effect on the pancreatic islets similar to that of glucose.


Asunto(s)
Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de la radiación , Ondas Ultrasónicas , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
17.
Transl Vis Sci Technol ; 10(14): 2, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851358

RESUMEN

Purpose: Macromolecules have been shown to be effective in vision-saving treatments for various ocular diseases, such as age-related macular degeneration and diabetic retinopathy. The current delivery of macromolecules requires frequent intraocular injections and carries a risk of serious adverse effects. Methods: We tested the application of therapeutic ultrasound as a minimally invasive approach for the delivery of Avastin into the diseased regions of the eye. Avastin (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) antibody with a molecular weight of 149 kDa. We tested the effectiveness and safety of Avastin delivery through rabbit sclera in vitro using a standard diffusion cell model. Ultrasound at frequencies of 400 kHz or 3 MHz with an intensity of 1 W/cm2 was applied for the first 5 minutes of 1-hour drug exposure. Sham treatments mimicked the ultrasound treatments, but ultrasound was not turned on. Absorbance measurements of the receiver compartment solution were performed at 280 nm using a spectrophotometer. Results: Absorbance measurements indicated no statistical difference between the sham (n = 13) and 400 kHz ultrasound group (n = 15) in the delivery of Avastin through the sclera. However, the absorbance values were statistically different (P < 0.01) between the 3 MHz ultrasound group (0.004, n = 8) and the matched sham group (0.002, n = 7). There was 2.3 times increase in drug delivery in the 3 MHz ultrasound when compared to the corresponding sham group. Histological studies indicated no significant damage in the ultrasound-treated sclera due to ultrasound application. Conclusions: Our preliminary results provided support that therapeutic ultrasound may be effective in the delivery of Avastin through the sclera. Translational Relevance: Our study offers clinical potential for a minimally invasive retinopathy treatment.


Asunto(s)
Bevacizumab/administración & dosificación , Retinopatía Diabética , Esclerótica , Terapia por Ultrasonido , Animales , Estudios de Factibilidad , Conejos
18.
Med Phys ; 37(4): 1440-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20443465

RESUMEN

PURPOSE: Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. METHODS: The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. RESULTS: The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. CONCLUSIONS: A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder. By following the methods used in this article, phantoms matching the optical, acoustic, and mechanical properties of other biological tissues can also be constructed.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Acústica , Elasticidad , Diseño de Equipo , Humanos , Microesferas , Modelos Estadísticos , Óptica y Fotónica , Oscilometría , Poliestirenos/química , Presión , Reproducibilidad de los Resultados , Programas Informáticos , Vejiga Urinaria/patología
19.
Future Oncol ; 6(9): 1497-511, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20919832

RESUMEN

The benefits of hyperthermia are well known as both a primary treatment modality and adjuvant therapy for treating cancer. Among the different techniques available, high-intensity focused ultrasound is the only noninvasive modality that can provide local hyperthermia precisely at a targeted location at any depth inside the body using image guidance. Traditionally, focused ultrasound exposures have been provided at high rates of energy deposition for thermal ablation of benign and malignant tumors. At present, exposures are being evaluated in pulsed mode, which lower the rates of energy deposition and generate primarily mechanical effects for enhancing tissue permeability to improve local drug delivery. These pulsed exposures can be modified for low-level hyperthermia as an adjuvant therapy for drug and gene delivery applications, as well as for more traditional applications such as radiosensitization. In this review, we discuss the manner by which focused ultrasound exposures at low rates of energy deposition are being developed for a variety of clinically translatable applications for the treatment of cancer. Specific preclinical studies will be highlighted. Additional information will also be provided for optimizing these exposures, including computer modeling and simulations. Various techniques for monitoring temperature elevations generated by focused ultrasound will also be reviewed.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hipertermia Inducida/métodos , Neoplasias/terapia , Animales , Humanos
20.
Ultrasound Med Biol ; 46(3): 639-648, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837888

RESUMEN

The tolerability and efficacy of low-frequency, low-intensity therapeutic ultrasound-induced insulin release was investigated in a pre-clinical in vivo murine model. The treatment groups received a single 5-min continuous sonication at 1 MHz and 1.0 W/cm2. Insulin and glucagon levels in the serum were determined using enzyme-linked immunosorbent assay. The pancreas was excised and sectioned for histologic analysis. In terminal studies, we observed a moderate (∼50 pM) but significant increase in blood insulin concentration in vivo immediately after sonication compared with a decrease of approximately 60 pM in sham animals (n < 6, p < 0.005). No difference was observed in the change in glucose or glucagon concentrations between groups. Comparisons of hematoxylin and eosin-stained terminal and survival pancreatic tissue revealed no visible differences or evidence of damage. This study is the first step in assessing the translational potential of therapeutic ultrasound as a treatment for early stages of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/terapia , Glucagón/sangre , Insulina/sangre , Terapia por Ultrasonido , Animales , Ratones , Páncreas/metabolismo , Páncreas/efectos de la radiación , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA