RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is lethal in 88% of patients1, yet harbours mutation-derived T cell neoantigens that are suitable for vaccines 2,3. Here in a phase I trial of adjuvant autogene cevumeran, an individualized neoantigen vaccine based on uridine mRNA-lipoplex nanoparticles, we synthesized mRNA neoantigen vaccines in real time from surgically resected PDAC tumours. After surgery, we sequentially administered atezolizumab (an anti-PD-L1 immunotherapy), autogene cevumeran (a maximum of 20 neoantigens per patient) and a modified version of a four-drug chemotherapy regimen (mFOLFIRINOX, comprising folinic acid, fluorouracil, irinotecan and oxaliplatin). The end points included vaccine-induced neoantigen-specific T cells by high-threshold assays, 18-month recurrence-free survival and oncologic feasibility. We treated 16 patients with atezolizumab and autogene cevumeran, then 15 patients with mFOLFIRINOX. Autogene cevumeran was administered within 3 days of benchmarked times, was tolerable and induced de novo high-magnitude neoantigen-specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neoantigen. Using a new mathematical strategy to track T cell clones (CloneTrack) and functional assays, we found that vaccine-expanded T cells comprised up to 10% of all blood T cells, re-expanded with a vaccine booster and included long-lived polyfunctional neoantigen-specific effector CD8+ T cells. At 18-month median follow-up, patients with vaccine-expanded T cells (responders) had a longer median recurrence-free survival (not reached) compared with patients without vaccine-expanded T cells (non-responders; 13.4 months, P = 0.003). Differences in the immune fitness of the patients did not confound this correlation, as responders and non-responders mounted equivalent immunity to a concurrent unrelated mRNA vaccine against SARS-CoV-2. Thus, adjuvant atezolizumab, autogene cevumeran and mFOLFIRINOX induces substantial T cell activity that may correlate with delayed PDAC recurrence.
Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Carcinoma Ductal Pancreático , Activación de Linfocitos , Neoplasias Pancreáticas , Linfocitos T , Humanos , Adyuvantes Inmunológicos/uso terapéutico , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Inmunoterapia , Activación de Linfocitos/inmunología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Linfocitos T/citología , Linfocitos T/inmunología , Vacunas de ARNmRESUMEN
Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness' based on neoantigen similarity to known antigens4,5, and 'selfness' based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.
Asunto(s)
Antígenos de Neoplasias , Supervivientes de Cáncer , Neoplasias Pancreáticas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Linfocitos T/inmunología , Escape del Tumor/inmunologíaRESUMEN
The role of nitric oxide (NO)(·) in the development of the metastatic properties of nasopharyngeal carcinoma (NPC) is not fully understood. Previous studies proposed that interleukin-6 (IL-6) would act as regulator of matrix metalloprotease activation in NPC. Recently, we showed that (NO)(·) was a critical mediator of tumor growth in patients. The aim of this study was to determine the implication of IL-6 in the progression of NPC pathology via metalloprotease (MMP) activation and their possible correlation with (NO)(·) production. We observed a significant increase in IL-6 and nitrite (NO2 (-)) synthesis in patients (n = 17) as well as a strong expression of IL-6 and nitric oxide synthase 2 (NOS2) in the analyzed tumors (n = 8). In patients' plasma, a negative correlation associated IL-6 with circulating nitrites (r = -0.33). A negative correlation associated the H-scores of these signals in the tumors (r = -0.47). In patients' plasma, nitrite synthesis was positively associated with MMP-9 activation (r = 0.45), pro-MMP-2 expression (r = 0.37), and negatively correlated with MMP-2 activation (r = -0.51). High nitrite levels was associated with better recurrence-free survival (RFS) (p = 0.02). Overall, our results suggest that the IL-6/NOS2 inflammatory signals are involved in the regulation of MMP-9- and MMP-2-dependent metastatic activity and that high circulating nitrite levels in NPC patients may constitute a prognostic predictor for survival.
Asunto(s)
Interleucina-6/fisiología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias Nasofaríngeas/patología , Óxido Nítrico Sintasa de Tipo II/fisiología , Adulto , Carcinoma , Humanos , Persona de Mediana Edad , FN-kappa B/fisiología , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/enzimología , Neoplasias Nasofaríngeas/mortalidad , Metástasis de la Neoplasia , Óxido Nítrico/fisiología , Nitritos/metabolismoRESUMEN
Nasopharyngeal carcinoma (NPC) is thought to arise because of chronic inflammation. The correlation between nitric oxide (NO) production, a biomarker of inflammation and NPC development remains unexplored. To investigate this question, we performed a profile analysis on plasma collected from untreated, treated, remissive, cured and relapsing patients. Nitrites were measured to assess NO activity. We observed that increased nitrites concentrations in untreated and relapsing patients associated with tumor development. Moreover, nitrites levels were similar in remissive, cured and healthy individuals. Altogether, our results suggest that NO might be an interesting blood biomarker to monitor tumor growth in NPC patients.
Asunto(s)
Carcinoma/sangre , Neoplasias Nasofaríngeas/sangre , Recurrencia Local de Neoplasia/sangre , Óxido Nítrico/sangre , Adolescente , Adulto , Argelia , Carcinoma/patología , Carcinoma/terapia , Estudios de Casos y Controles , Humanos , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/terapia , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/prevención & control , Carga Tumoral , Adulto JovenRESUMEN
Group 2 innate lymphoid cells (ILC2s) are lymphocytes that both promote and suppress antitumor immunity. Jou and colleagues now report in colorectal tumorigenesis that the cytokine interleukin-25 activates ILC2s to induce myeloid cells that suppress antitumor immunity.
Asunto(s)
Linfocitos , Neoplasias , Citocinas , Humanos , Inmunidad InnataRESUMEN
The increasingly frequent outbreaks of pathogenic viruses have underlined the urgent need to improve our arsenal of antivirals that can be deployed for future pandemics. Innate immunity is a powerful first line of defense against pathogens, and compounds that boost the innate response have high potential to act as broad-spectrum antivirals. Here, we harnessed localization-dependent protein-complementation assays (called Alpha Centauri) to measure the nuclear translocation of interferon regulatory factors (IRFs), thus providing a readout of innate immune activation following viral infection that is applicable to high-throughput screening of immunomodulatory molecules. As proof of concept, we screened a library of kinase inhibitors on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and identified Gilteritinib as a powerful enhancer of innate responses to viral infection. This immunostimulatory activity of Gilteritinib was found to be dependent on the AXL-IRF7 axis and results in a broad and potent antiviral activity against unrelated RNA viruses.
Asunto(s)
COVID-19 , Virosis , Antivirales/farmacología , Humanos , Inmunidad Innata , SARS-CoV-2 , Virosis/tratamiento farmacológicoRESUMEN
Epstein-Barr virus (EBV) is associated with several malignancies, including carcinomas, such as nasopharyngeal carcinoma, and lymphomas, such as Burkitt's lymphoma and Hodgkin's lymphoma. The Latent Membrane Protein 1 (LMP1) is the major oncogene protein of EBV as its expression is responsible for the induction of cell transformation, immortalization and proliferation. Arsenic trioxide was shown to induce a cytotoxic effect on nasopharyngeal cancer cells associated with LMP1 down-regulation. However, the effect of arsenic on EBV-associated lymphoproliferative malignancies has been less studied. We investigated the effect of two different arsenical compounds, arsenic trioxide (As2O3) and sodium arsenite (NaAsO2) on the induction of cell death in P3HR1 cells, an Epstein-Barr virus-positive Burkitt lymphoma derived cell line. Both compounds inhibited cell growth and induced cell death. By flow-cytometry and Western blot analysis, we provide evidence that NaAsO2 induced caspase-dependent apoptosis whereas As2O3 triggered autophagic cell death. Furthermore, we show that NaAsO2 treatment led to a dramatic decrease of the expression level of LMP1 and the cellular protein PML. Importantly, this down-regulation was associated with a reactivation of EBV lytic cycle through the induction of immediate-early proteins Zta and Rta. These results are in agreement with a model in which LMP1 maintains EBV in a latent state by stabilizing PML expression. Altogether, our results suggest that NaAsO2 would represent a better therapeutic candidate than As2O3 in EBV-induced B lymphoma for its capacity to promote viral reactivation.