Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Bioinformatics ; 23(1): 286, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854213

RESUMEN

BACKGROUND: Reverse transcription quantitative real-time PCR (RT-qPCR) is a well-established method for analysing gene expression. Most RT-qPCR experiments in the field of microbiology aim for the detection of transcriptional changes by relative quantification, which means the comparison of the expression level of a specific gene between different samples by the application of a calibration condition and internal reference genes. Due to the numerous data processing procedures and factors that can influence the final result, relative expression analysis and interpretation of RT-qPCR data are still not trivial and often necessitate the use of multiple separate software packages capable of performing specific functions. RESULTS: Here we present qRAT, a stand-alone desktop application based on R that automatically processes raw output data from any qPCR machine using well-established and state-of-the-art statistical and graphical techniques. The ability of qRAT to analyse RT-qPCR data was evaluated using two example datasets generated in our laboratory. The tool successfully completed the procedure in both cases, returning the expected results. The current implementation includes functionalities for parsing, filtering, normalizing and visualisation of relative RT-qPCR data, like the determination of the relative quantity and the fold change of differentially expressed genes as well as the correction of inter-plate variation for multiple-plate experiments. CONCLUSION: qRAT provides a comprehensive, straightforward, and easy-to-use solution for the relative quantification of RT-qPCR data that requires no programming knowledge or additional software installation. All application features are available for free and without requiring a login or registration.


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Calibración , Perfilación de la Expresión Génica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
2.
Anal Bioanal Chem ; 413(11): 3055-3067, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675374

RESUMEN

Fusarium oxysporum is a plant pathogenic fungus leading to severe crop losses in agriculture every year. A sustainable way of combating this pathogen is the application of mycoparasites-fungi parasitizing other fungi. The filamentous fungus Trichoderma atroviride is such a mycoparasite that is able to antagonize phytopathogenic fungi. It is therefore frequently applied as a biological pest control agent in agriculture. Given that volatile metabolites play a crucial role in organismic interactions, the major aim of this study was to establish a method for on-line analysis of headspace microbial volatile organic compounds (MVOCs) during cultivation of different fungi. An ion mobility spectrometer with gas chromatographic pre-separation (GC-IMS) enables almost real-time information of volatile emissions with good selectivity. Here we illustrate the successful use of GC-IMS for monitoring the time- and light-dependent release of MVOCs by F. oxysporum and T. atroviride during axenic and co-cultivation. More than 50 spectral peaks were detected, which could be assigned to 14 volatile compounds with the help of parallel gas chromatography-mass spectrometric (GC-MS) measurements. The majority of identified compounds are alcohols, such as ethanol, 1-propanol, 2-methyl propanol, 2-methyl butanol, 3-methyl-1-butanol and 1-octen-3-ol. In addition to four ketones, namely acetone, 2-pentanone, 2-heptanone, 3-octanone, and 2-octanone; two esters, ethyl acetate and 1-butanol-3-methylacetate; and one aldehyde, 3-methyl butanal, showed characteristic profiles during cultivation depending on axenic or co-cultivation, exposure to light, and fungal species. Interestingly, 2-octanone was produced only in co-cultures of F. oxysporum and T. atroviride, but it was not detected in the headspace of their axenic cultures. The concentrations of the measured volatiles were predominantly in the low ppbv range; however, values above 100 ppbv were detected for several alcohols, including ethanol, 2-methylpropanol, 2-methyl butanol, 1- and 3-methyl butanol, and for the ketone 2-heptanone, depending on the cultivation conditions. Our results highlight that GC-IMS analysis can be used as a valuable analytical tool for identifying specific metabolite patterns for chemotaxonomic and metabolomic applications in near-to-real time and hence easily monitor temporal changes in volatile concentrations that take place in minutes.


Asunto(s)
Fusarium/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Hypocreales/metabolismo , Espectrometría de Movilidad Iónica/métodos , Compuestos Orgánicos Volátiles/metabolismo
3.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668792

RESUMEN

Single-molecule localization microscopy has boosted our understanding of biological samples by offering access to subdiffraction resolution using fluorescence microscopy methods. While in standard mammalian cells this approach has found wide-spread use, its application to filamentous fungi has been scarce. This is mainly due to experimental challenges that lead to high amounts of background signal because of ample autofluorescence. Here, we report the optimization of labeling, imaging and data analysis protocols to yield the first single-molecule localization microscopy images of the filamentous fungus Trichoderma atroviride. As an example, we show the spatial distribution of the Sur7 tetraspanin-family protein Sfp2 required for hyphal growth and cell wall stability in this mycoparasitic fungus.


Asunto(s)
Pared Celular/química , Proteínas Fúngicas/química , Hypocreales/química , Proteínas de la Membrana/química , Imagen Individual de Molécula/métodos , Tetraspaninas/química
4.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947876

RESUMEN

Trichoderma atroviride is a strong necrotrophic mycoparasite antagonizing and feeding on a broad range of fungal phytopathogens. It further beneficially acts on plants by enhancing growth in root and shoot and inducing systemic resistance. Volatile organic compounds (VOCs) are playing a major role in all those processes. Light is an important modulator of secondary metabolite biosynthesis, but its influence has often been neglected in research on fungal volatiles. To date, T. atroviride IMI 206040 and T. atroviride P1 are among the most frequently studied T. atroviride strains and hence are used as model organisms to study mycoparasitism and photoconidiation. However, there are no studies available, which systematically and comparatively analyzed putative differences between these strains regarding their light-dependent behavior and VOC biosynthesis. We therefore explored the influence of light on conidiation and the mycoparasitic interaction as well as the light-dependent production of VOCs in both strains. Our data show that in contrast to T. atroviride IMI 206040 conidiation in strain P1 is independent of light. Furthermore, significant strain- and light-dependent differences in the production of several VOCs between the two strains became evident, indicating that T. atroviride P1 could be a better candidate for plant protection than IMI 206040.


Asunto(s)
Luz , Trichoderma/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Regulación Fúngica de la Expresión Génica , Especificidad de la Especie
5.
Molecules ; 23(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562966

RESUMEN

Single molecule localization microscopy is currently revolutionizing the life sciences as it offers, for the first time, insights into the organization of biological samples below the classical diffraction limit of light microscopy. While there have been numerous examples of new biological findings reported in the last decade, the technique could not reach its full potential due to a set of limitations immanent to the samples themselves. Particularly, high background signals impede the proper performance of most single-molecule identification and localization algorithms. One option is to exploit the characteristic blinking of single molecule signals, which differs substantially from the residual brightness fluctuations of the fluorescence background. To pronounce single molecule signals, we used a temporal high-pass filtering in Fourier space on a pixel-by-pixel basis. We evaluated the performance of temporal filtering by assessing statistical parameters such as true positive rate and false discovery rate. For this, ground truth signals were generated by simulations and overlaid onto experimentally derived movies of samples with high background signals. Compared to the nonfiltered case, we found an improvement of the sensitivity by up to a factor 3.5 while no significant change in the localization accuracy was observable.


Asunto(s)
Algoritmos , Proteínas Fluorescentes Verdes , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos
6.
Proteomics ; 16(11-12): 1742-6, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26959280

RESUMEN

Studying microbial interactions by MALDI mass spectrometry imaging (MSI) directly from growing media is a difficult task if high sensitivity is demanded. We present a quick and robust sample preparation strategy for growing fungi (Trichoderma atroviride, Rhizoctonia solani) on glass slides to establish a miniaturized confrontation assay. By this we were able to visualize metabolite distributions by MALDI MSI after matrix deposition with a home-built sublimation device and thorough recrystallization. We present for the first time MALDI MSI data for secondary metabolite release during active mycoparasitism.


Asunto(s)
Rhizoctonia/metabolismo , Manejo de Especímenes/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Trichoderma/metabolismo , Regulación Fúngica de la Expresión Génica , Interacciones Microbianas , Rhizoctonia/química , Trichoderma/química
7.
Chem Biodivers ; 12(5): 743-51, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26010663

RESUMEN

In this work, we present the 'Peptaibiotics Database' (PDB), a comprehensive online resource, which intends to cover all Aib-containing non-ribosomal fungal peptides currently described in scientific literature. This database shall extend and update the recently published 'Comprehensive Peptaibiotics Database' and currently consists of 1,297 peptaibiotic sequences. In a literature survey, a total of 235 peptaibiotic sequences published between January 2013 and June 2014 have been compiled, and added to the list of 1,062 peptides in the recently published 'Comprehensive Peptaibiotics Database'. The presented database is intended as a public resource freely accessible to the scientific community at peptaibiotics-database.boku.ac.at. The search options of the previously published repository and the presentation of sequence motif searches have been extended significantly. All of the available search options can be combined to create complex database queries. As a public repository, the presented database enables the easy upload of new peptaibiotic sequences or the correction of existing informations. In addition, an administrative interface for maintenance of the content of the database has been implemented, and the design of the database can be easily extended to store additional information to accommodate future needs of the 'peptaibiomics community'.


Asunto(s)
Antibacterianos/química , Bases de Datos Factuales , Internet , Péptidos/química
8.
J Am Soc Mass Spectrom ; 35(6): 1168-1177, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708575

RESUMEN

The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.


Asunto(s)
Hypocreales , Espectrometría de Masas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Espectrometría de Masas/métodos , Hypocreales/química , Protones , Agentes de Control Biológico/química , Agentes de Control Biológico/análisis , Trichoderma/química , Trichoderma/metabolismo , Pironas/análisis , Pironas/química
9.
Microbiol Spectr ; 12(3): e0309723, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38334386

RESUMEN

The mycoparasitic fungus Trichoderma atroviride is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state. Therefore, histone modifications are crucial for the regulation of secondary metabolism. Here, we functionally investigated the role of the class II histone deacetylase encoding gene hda1 of T. atroviride by targeted gene deletion, phenotypic characterization, and multi-omics approaches. Deletion of hda1 did not result in obvious phenotypic alterations but led to an enhanced inhibitory activity of secreted metabolites and reduced mycoparasitic abilities of T. atroviride against the plant-pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The ∆hda1 mutants emitted altered amounts of four volatile organic compounds along their development, produced different metabolite profiles upon growth in liquid culture, and showed a higher susceptibility to oxidative and osmotic stress. Moreover, hda1 deletion affected the expression of several notable gene categories such as polyketide synthases, transcription factors, and genes involved in the HOG MAPK pathway.IMPORTANCEHistone deacetylases play crucial roles in regulating chromatin structure and gene transcription. To date, classical-Zn2+ dependent-fungal histone deacetylases are divided into two classes, of which each comprises orthologues of the two sub-groups Rpd3 and Hos2 and Hda1 and Hos3 of yeast, respectively. However, the role of these chromatin remodelers in mycoparasitic fungi is poorly understood. In this study, we provide evidence that Hda1, the class II histone deacetylases of the mycoparasitic fungus Trichoderma atroviride, regulates its mycoparasitic activity, secondary metabolite biosynthesis, and osmotic and oxidative stress tolerance. The function of Hda1 in regulating bioactive metabolite production and mycoparasitism reveals the importance of chromatin-dependent regulation in the ability of T. atroviride to successfully control fungal plant pathogens.


Asunto(s)
Hypocreales , Trichoderma , Metabolismo Secundario , Osmorregulación , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Estrés Oxidativo , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica
10.
Fungal Genet Biol ; 56: 67-77, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23707931

RESUMEN

A putative terpene cyclase vir4, which is a member of a secondary metabolite cluster, has been deleted in Trichoderma virens to determine its function. The deletion mutants were compared for volatile production with the wild-type as well as two other Trichoderma spp. This gene cluster was originally predicted to function in the synthesis of viridin and viridiol. However, the experimental evidence demonstrates that this gene cluster is involved in the synthesis of volatile terpene compounds. The entire vir4-containing gene cluster is absent in two other species of Trichoderma, T. atroviride and T. reesei. Neither of these two species synthesizes volatile terpenes associated with this cluster in T. virens. We have thus identified a novel class of volatile fungal sesquiterpenes as well as the gene cluster involved in their biosynthesis.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Redes y Vías Metabólicas/genética , Terpenos/metabolismo , Trichoderma/metabolismo , Transferasas Alquil y Aril/genética , Eliminación de Gen , Familia de Multigenes , Trichoderma/enzimología , Trichoderma/genética
11.
BMC Microbiol ; 13: 108, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23679152

RESUMEN

BACKGROUND: Eukaryotic organisms employ cell surface receptors such as the seven-transmembrane G protein-coupled receptors (GPCRs) as sensors to connect to the environment. GPCRs react to a variety of extracellular cues and are considered to play central roles in the signal transduction in fungi. Several species of the filamentous ascomycete Trichoderma are potent mycoparasites, i.e. can attack and parasitize other fungi, which turns them into successful bio-fungicides for the protection of plants against fungal phytopathogens. The identification and characterization of GPCRs will provide insights into how Trichoderma communicates with its environment and senses the presence of host fungi. RESULTS: We mined the recently published genomes of the two mycoparasitic biocontrol agents Trichoderma atroviride and Trichoderma virens and compared the identified GPCR-like proteins to those of the saprophyte Trichoderma reesei. Phylogenetic analyses resulted in 14 classes and revealed differences not only among the three Trichoderma species but also between Trichoderma and other fungi. The class comprising proteins of the PAQR family was significantly expanded both in Trichoderma compared to other fungi as well as in the two mycoparasites compared to T. reesei. Expression analysis of the PAQR-encoding genes of the three Trichoderma species revealed that all except one were actually transcribed. Furthermore, the class of receptors with a DUF300 domain was expanded in T. atroviride, and T. virens showed an expansion of PTH11-like receptors compared to T. atroviride and T. reesei. CONCLUSIONS: Comparative genome analyses of three Trichoderma species revealed a great diversity of putative GPCRs with genus- and species- specific differences. The expansion of certain classes in the mycoparasites T. atroviride and T. virens is likely to reflect the capability of these fungi to establish various ecological niches and interactions with other organisms such as fungi and plants. These GPCRs consequently represent interesting candidates for future research on the mechanisms underlying mycoparasitism and biocontrol.


Asunto(s)
Genoma Fúngico , Receptores Acoplados a Proteínas G/genética , Trichoderma/enzimología , Trichoderma/genética , Perfilación de la Expresión Génica , Filogenia , Receptores Acoplados a Proteínas G/clasificación , Homología de Secuencia , Transducción de Señal/genética , Transcripción Genética
12.
Chem Biodivers ; 10(5): 734-43, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23681723

RESUMEN

Peptaibiotics are nonribosomally biosynthesized peptides, which - according to definition - contain the marker amino acid α-aminoisobutyric acid (Aib) and possess antibiotic properties. Being known since 1958, a constantly increasing number of peptaibiotics have been described and investigated with a particular emphasis on hypocrealean fungi. Starting from the existing online 'Peptaibol Database', first published in 1997, an exhaustive literature survey of all known peptaibiotics was carried out and resulted in a list of 1043 peptaibiotics. The gathered information was compiled and used to create the new 'The Comprehensive Peptaibiotics Database', which is presented here. The database was devised as a software tool based on Microsoft (MS) Access. It is freely available from the internet at http://peptaibiotics-database.boku.ac.at and can easily be installed and operated on any computer offering a Windows XP/7 environment. It provides useful information on characteristic properties of the peptaibiotics included such as peptide category, group name of the microheterogeneous mixture to which the peptide belongs, amino acid sequence, sequence length, producing fungus, peptide subfamily, molecular formula, and monoisotopic mass. All these characteristics can be used and combined for automated search within the database, which makes The Comprehensive Peptaibiotics Database a versatile tool for the retrieval of valuable information about peptaibiotics. Sequence data have been considered as to December 14, 2012.


Asunto(s)
Antibacterianos , Bases de Datos Factuales , Péptidos/síntesis química , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos/química
13.
Fungal Biol Biotechnol ; 10(1): 20, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789459

RESUMEN

BACKGROUND: Trichoderma atroviride is a competitive soil-borne mycoparasitic fungus with extensive applications as a biocontrol agent in plant protection. Despite its importance and application potential, reference genes for RT-qPCR analysis in T. atroviride have not been evaluated. Light exerts profound effects on physiology, such as growth, conidiation, secondary metabolism, and stress response in T. atroviride, as well as in other fungi. In this study, we aimed to address this gap by identifying stable reference genes for RT-qPCR experiments in T. atroviride under different light conditions, thereby enhancing accurate and reliable gene expression analysis in this model mycoparasite. We measured and compared candidate reference genes using commonly applied statistical algorithms. RESULTS: Under cyclic light-dark cultivation conditions, tbp and rho were identified as the most stably expressed genes, while act1, fis1, btl, and sar1 were found to be the least stable. Similar stability rankings were obtained for cultures grown under complete darkness, with tef1 and vma1 emerging as the most stable genes and act1, rho, fis1, and btl as the least stable genes. Combining the data from both cultivation conditions, gapdh and vma1 were identified as the most stable reference genes, while sar1 and fis1 were the least stable. The selection of different reference genes had a significant impact on the calculation of relative gene expression, as demonstrated by the expression patterns of target genes pks4 and lox1. CONCLUSION: The data emphasize the importance of validating reference genes for different cultivation conditions in fungi to ensure accurate interpretation of gene expression data.

14.
Bio Protoc ; 13(19): e4837, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817900

RESUMEN

Mixed communities of fungi and bacteria have been shown to be more efficient in degrading wood than fungi alone. Some standardised protocols for quantification of the wood decay ability of fungi have been developed (e.g., DIN V ENV 12038:2002 as the legal standard to test for the resistance of wood against wood-destroying basidiomycetes in Germany). Here, we describe a step-by-step protocol developed from the official standard DIN V ENV12038 to test combinations of bacteria and fungi for their combined wood degradation ability. Equally sized wood blocks are inoculated with wood decay fungi and bacterial strains. Axenic controls allow the analysis of varying degradation rates via comparison of the wood dry weights at the end of the experiments. This protocol provides new opportunities in exploration of inter- and intra-kingdom interactions in the wood-related environment and forms the basis for microcosm experiments. Key features • Quantification of wood decay ability of mixed cultures. • Allows testing if fungi are more efficient in degrading wood when bacteria are present.

15.
Environ Microbiol Rep ; 15(6): 642-655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37789578

RESUMEN

The basidiomycete Serpula lacrymans is responsible for major timber devastation in houses. Basidiomycetes are known to harbour a diverse but poorly understood microbial community of bacteria, archaea, yeasts and filamentous fungi. In this study, we used amplicon-sequencing to analyse the abundance and composition of prokaryotic communities associated with fruiting bodies of S. lacrymans and compared them to communities of surrounding material to access the 'background' community structure. Our findings indicate that bacterial genera cluster depended on sample type and that the main driver for microbial diversity is specimen, followed by sample origin. The most abundant bacterial phylum identified in the fruiting bodies was Pseudomonadota, followed by Actinomycetota and Bacteroidota. The prokaryote community of the mycelium was dominated by Actinomycetota, Halobacterota and Pseudomonadota. Actinomycetota was the most abundant phylum in both environment samples (infested timber and underground scree), followed by Bacillota in wood and Pseudomonadota in underground samples. Nocardioides, Pseudomonas, Pseudonochardia, Streptomyces and Rubrobacter spp. were among others found to comprise the core microbiome of S. lacrymans basidiocarps. This research contributes to the understanding of the holobiont S. lacrymans and gives hints to potential bacterial phyla important for its development and lifestyle.


Asunto(s)
Ascomicetos , Basidiomycota , Bacterias/genética , Células Procariotas
16.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623556

RESUMEN

Many studies aim at maximizing fungal secondary metabolite production but the influence of light during cultivation has often been neglected. Here, we combined an untargeted isotope-assisted liquid chromatography-high-resolution mass spectrometry-based metabolomics approach with standardized cultivation of Trichoderma atroviride under three defined light regimes (darkness (PD), reduced light (RL) exposure, and 12/12 h light/dark cycle (LD)) to systematically determine the effect of light on secondary metabolite production. Comparative analyses revealed a similar metabolite profile upon cultivation in PD and RL, whereas LD treatment had an inhibiting effect on both the number and abundance of metabolites. Additionally, the spatial distribution of the detected metabolites for PD and RL was analyzed. From the more than 500 detected metabolites, only 25 were exclusively produced upon fungal growth in darkness and 85 were significantly more abundant in darkness. The majority were detected under both cultivation conditions and annotation revealed a cluster of substances whose production followed the pattern observed for the well-known T. atroviride metabolite 6-pentyl-alpha-pyrone. We conclude that cultivation of T. atroviride under RL can be used to maximize secondary metabolite production.

17.
Sci Rep ; 13(1): 19976, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968441

RESUMEN

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi. In this study, we identified the most robustly regulated targets that were governed by Tmk1 during mycoparasitism using transcriptome and proteome profiling. Tmk1 mainly exerts a stimulating function for T. atroviride during its mycoparasitic interaction with the fungal plant pathogen Rhizoctonia solani, as reflected by 89% of strongly differently responding genes in the ∆tmk1 mutant compared to the wild type. Specifically, 54% of these genes showed strong downregulation in the response with a deletion of the tmk1 gene, whereas in the wild type the same genes were strongly upregulated during the interaction with the fungal host. These included the gene encoding the mycoparasitism-related proteinase Prb1; genes involved in signal transduction pathways such as a candidate coding for a conserved 14-3-3 protein, and a gene coding for Tmk2, the T. atroviride cell-wall integrity MAP kinase; genes encoding a specific siderophore synthetase, and multiple FAD-dependent oxidoreductases and aminotransferases. Due to the phosphorylating activity of Tmk1, different (phospho-)proteomics approaches were applied and identified proteins associated with cellular metabolism, energy production, protein synthesis and fate, and cell organization. Members of FAD- and NAD/NADP-binding-domain proteins, vesicular trafficking of molecules between cellular organelles, fungal translational, as well as protein folding apparatus were among others found to be phosphorylated by Tmk1 during mycoparasitism. Outstanding downregulation in the response of the ∆tmk1 mutant to the fungal host compared to the wild type at both the transcriptome and the proteome levels was observed for nitrilase, indicating that its defense and detoxification functions might be greatly dependent on Tmk1 during T. atroviride mycoparasitism. An intersection network analysis between the identified transcripts and proteins revealed a strong involvement of Tmk1 in molecular functions with GTPase and oxidoreductase activity. These data suggest that during T. atroviride mycoparasitism this MAPK mainly governs processes regulating cell responses to extracellular signals and those involved in reactive oxygen stress.


Asunto(s)
Hypocreales , Trichoderma , Proteoma/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Hypocreales/metabolismo , Trichoderma/metabolismo , Regulación Fúngica de la Expresión Génica
18.
Microbiology (Reading) ; 158(Pt 1): 107-118, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22075023

RESUMEN

Mycoparasitic Trichoderma species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, Trichoderma directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In various fungal pathogens, including mycoparasites, signalling via heterotrimeric G proteins plays a major role in regulating pathogenicity-related functions. However, the corresponding receptors involved in the recognition of host-derived signals are largely unknown. Functional characterization of Trichoderma atroviride Gpr1 revealed a prominent role of this seven-transmembrane protein of the cAMP-receptor-like family of fungal G-protein-coupled receptors in the antagonistic interaction with the host fungus and governing of mycoparasitism-related processes. Silencing of gpr1 led to an avirulent phenotype accompanied by an inability to attach to host hyphae. Furthermore, gpr1-silenced transformants were unable to respond to the presence of living host fungi with the expression of chitinase- and protease-encoding genes. Addition of exogenous cAMP was able to restore host attachment in gpr1-silenced transformants but could not restore mycoparasitic overgrowth. A search for downstream targets of the signalling pathway(s) involving Gpr1 resulted in the isolation of genes encoding e.g. a member of the cyclin-like superfamily and a small secreted cysteine-rich protein. Although silencing of gpr1 caused defects similar to those of mutants lacking the Tga3 Gα protein, no direct interaction between Gpr1 and Tga3 was observed in a split-ubiquitin two-hybrid assay.


Asunto(s)
Antibiosis , Proteínas Fúngicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rhizoctonia/fisiología , Trichoderma/fisiología , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Rhizoctonia/crecimiento & desarrollo , Alineación de Secuencia , Trichoderma/química , Trichoderma/genética
19.
Indian J Microbiol ; 52(4): 522-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24293705

RESUMEN

Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

20.
Methods Mol Biol ; 2234: 55-62, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33165778

RESUMEN

Transformation enables the transfer of DNA into fungal cells for subsequent integration into the genome. Due to its versatility in industrial application, transformation is of utmost importance in Trichoderma reesei and hence continuously optimized. As one of the most crucial obstacles in fungal transformation efforts, removal of the cell wall is required to efficiently target genome modification cassettes to the genome. Here we describe resistance marker-mediated gene gun (biolistic) transformation of fungal spores of T. reesei as an alternative to protoplast transformation.


Asunto(s)
Biolística/métodos , Hypocreales/genética , Transformación Genética , ADN de Hongos/genética , Marcadores Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA