Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Lipidol ; 34(5): 201-207, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548386

RESUMEN

PURPOSE OF REVIEW: The SREBP transcription factors are master regulators of lipid homeostasis owing to their role in controlling cholesterol and fatty acid metabolism. The core machinery required to promote their trafficking and proteolytic activation has been established close to 20 years ago. In this review, we summarize the current understanding of a newly identified regulator of SREBP signaling, SPRING (formerly C12ORF49), its proposed mechanism of action, and its role in lipid metabolism. RECENT FINDINGS: Using whole-genome functional genetic screens we, and others, have recently identified SPRING as a novel regulator of SREBP signaling. SPRING is a Golgi-resident single-pass transmembrane protein that is required for proteolytic activation of SREBPs in this compartment. Mechanistic studies identified regulation of S1P, the protease that cleaves SREBPs, and control of retrograde trafficking of the SREBP chaperone SCAP from the Golgi to the ER as processes requiring SPRING. Emerging studies suggest an important role for SPRING in regulating circulating and hepatic lipid levels in mice and potentially in humans. SUMMARY: Current studies support the notion that SPRING is a novel component of the core SREBP-activating machinery. Additional studies are warranted to elucidate its role in cellular and systemic lipid metabolism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos , Humanos , Ratones , Animales , Metabolismo de los Lípidos/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Colesterol/metabolismo
2.
J Lipid Res ; 64(2): 100325, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592658

RESUMEN

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Asunto(s)
Macrófagos , Esteroles , Animales , Humanos , Ratones , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Inmunológicos , Esteroles/metabolismo , Factores de Transcripción/metabolismo
3.
Cell ; 134(1): 97-111, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614014

RESUMEN

Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers induction of the oxysterol-metabolizing enzyme SULT2B1, consequent suppression of the LXR pathway for cholesterol transport, and promotion of the SREBP pathway for cholesterol synthesis. Ligation of LXR during T cell activation inhibits mitogen-driven expansion, whereas loss of LXRbeta confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the antiproliferative action of LXR. Mice lacking LXRbeta exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These results implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Esteroles/metabolismo , Linfocitos T/inmunología , Envejecimiento , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Receptores X del Hígado , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Linfocitos T/metabolismo
4.
J Biol Chem ; 295(39): 13570-13583, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32727844

RESUMEN

Hepatic abundance of the low-density lipoprotein receptor (LDLR) is a critical determinant of circulating plasma LDL cholesterol levels and hence development of coronary artery disease. The sterol-responsive E3 ubiquitin ligase inducible degrader of the LDLR (IDOL) specifically promotes ubiquitination and subsequent lysosomal degradation of the LDLR and thus controls cellular LDL uptake. IDOL contains an extended N-terminal FERM (4.1 protein, ezrin, radixin, and moesin) domain, responsible for substrate recognition and plasma membrane association, and a second C-terminal RING domain, responsible for the E3 ligase activity and homodimerization. As IDOL is a putative lipid-lowering drug target, we investigated the molecular details of its substrate recognition. We produced and isolated full-length IDOL protein, which displayed high autoubiquitination activity. However, in vitro ubiquitination of its substrate, the intracellular tail of the LDLR, was low. To investigate the structural basis for this, we determined crystal structures of the extended FERM domain of IDOL and multiple conformations of its F3ab subdomain. These reveal the archetypal F1-F2-F3 trilobed FERM domain structure but show that the F3c subdomain orientation obscures the target-binding site. To substantiate this finding, we analyzed the full-length FERM domain and a series of truncated FERM constructs by small-angle X-ray scattering (SAXS). The scattering data support a compact and globular core FERM domain with a more flexible and extended C-terminal region. This flexibility may explain the low activity in vitro and suggests that IDOL may require activation for recognition of the LDLR.


Asunto(s)
Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Dominios FERM , Humanos , Modelos Moleculares , Receptores de LDL/química , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
5.
J Autoimmun ; 124: 102723, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481107

RESUMEN

The initiation and progression of autoimmune disorders such as multiple sclerosis (MS) is linked to aberrant cholesterol metabolism and overt inflammation. Liver X receptors (LXR) are nuclear receptors that function at the crossroads of cholesterol metabolism and immunity, and their activation is considered a promising therapeutic strategy to attenuate autoimmunity. However, despite clear functional heterogeneity and cell-specific expression profiles, the impact of the individual LXR isoforms on autoimmunity remains poorly understood. Here, we show that LXRα and LXRß have an opposite impact on immune cell function and disease severity in the experimental autoimmune encephalomyelitis model, an experimental MS model. While Lxrα deficiency aggravated disease pathology and severity, absence of Lxrß was protective. Guided by flow cytometry and by using cell-specific knockout models, reduced disease severity in Lxrß-deficient mice was primarily attributed to changes in peripheral T cell physiology and occurred independent from alterations in microglia function. Collectively, our findings indicate that LXR isoforms play functionally non-redundant roles in autoimmunity, potentially having broad implications for the development of LXR-based therapeutic strategies aimed at dampening autoimmunity and neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Receptores X del Hígado/metabolismo , Microglía/patología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Animales , Autoinmunidad , Colesterol/metabolismo , Modelos Animales de Enfermedad , Humanos , Receptores X del Hígado/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamación Neurogénica
6.
Circulation ; 140(4): 280-292, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31117816

RESUMEN

BACKGROUND: The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying patients with type I congenital disorders of glycosylation (CDGs) with defective N-glycosylation. METHODS: We studied 29 patients with the 2 most prevalent types of type I CDG, ALG6 (asparagine-linked glycosylation protein 6)-deficiency CDG and PMM2 (phosphomannomutase 2)-deficiency CDG, and 23 first- and second-degree relatives with a heterozygous mutation and measured plasma cholesterol levels. Low-density lipoprotein (LDL) metabolism was studied in 3 cell models-gene silencing in HepG2 cells, patient fibroblasts, and patient hepatocyte-like cells derived from induced pluripotent stem cells-by measuring apolipoprotein B production and secretion, LDL receptor expression and membrane abundance, and LDL particle uptake. Furthermore, SREBP2 (sterol regulatory element-binding protein 2) protein expression and activation and endoplasmic reticulum stress markers were studied. RESULTS: We report hypobetalipoproteinemia (LDL cholesterol [LDL-C] and apolipoprotein B below the fifth percentile) in a large cohort of patients with type I CDG (mean age, 9 years), together with reduced LDL-C and apolipoprotein B in clinically unaffected heterozygous relatives (mean age, 46 years), compared with 2 separate sets of age- and sex-matched control subjects. ALG6 and PMM2 deficiency led to markedly increased LDL uptake as a result of increased cell surface LDL receptor abundance. Mechanistically, this outcome was driven by increased SREBP2 protein expression accompanied by amplified target gene expression, resulting in higher LDL receptor protein levels. Endoplasmic reticulum stress was not found to be a major mediator. CONCLUSIONS: Our study establishes N-glycosylation as an important regulator of LDL metabolism. Given that LDL-C was also reduced in a group of clinically unaffected heterozygotes, we propose that increasing LDL receptor-mediated cholesterol clearance by targeting N-glycosylation in the LDL pathway may represent a novel therapeutic strategy to reduce LDL-C and cardiovascular disease.


Asunto(s)
LDL-Colesterol/genética , Glicosilación , Receptores de LDL/metabolismo , Niño , Femenino , Humanos , Masculino
7.
Circ Res ; 122(5): 730-741, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301853

RESUMEN

RATIONALE: An elevated level of plasma LDL (low-density lipoprotein) is an established risk factor for cardiovascular disease. Recently, we reported that the (pro)renin receptor ([P]RR) regulates LDL metabolism in vitro via the LDLR (LDL receptor) and SORT1 (sortilin-1), independently of the renin-angiotensin system. OBJECTIVES: To investigate the physiological role of (P)RR in lipid metabolism in vivo. METHODS AND RESULTS: We used N-acetylgalactosamine modified antisense oligonucleotides to specifically inhibit hepatic (P)RR expression in C57BL/6 mice and studied the consequences this has on lipid metabolism. In line with our earlier report, hepatic (P)RR silencing increased plasma LDL-C (LDL cholesterol). Unexpectedly, this also resulted in markedly reduced plasma triglycerides in a SORT1-independent manner in C57BL/6 mice fed a normal- or high-fat diet. In LDLR-deficient mice, hepatic (P)RR inhibition reduced both plasma cholesterol and triglycerides, in a diet-independent manner. Mechanistically, we found that (P)RR inhibition decreased protein abundance of ACC (acetyl-CoA carboxylase) and PDH (pyruvate dehydrogenase). This alteration reprograms hepatic metabolism, leading to reduced lipid synthesis and increased fatty acid oxidation. As a result, hepatic (P)RR inhibition attenuated diet-induced obesity and hepatosteatosis. CONCLUSIONS: Collectively, our study suggests that (P)RR plays a key role in energy homeostasis and regulation of plasma lipids by integrating hepatic glucose and lipid metabolism.


Asunto(s)
Hígado Graso/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Obesidad/metabolismo , Receptores de Superficie Celular/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Silenciador del Gen , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Superficie Celular/genética , Receptor de Prorenina
8.
Curr Opin Lipidol ; 30(3): 192-197, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30896554

RESUMEN

PURPOSE OF REVIEW: The RING E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL, also known as MYLIP) promotes ubiquitylation and subsequent lysosomal degradation of the LDL receptor (LDLR), thus acting to limit uptake of lipoprotein-derived cholesterol into cells. Next to the LDLR, IDOL also promotes degradation of two related receptors, the very LDL receptor (VLDLR) and apolipoprotein E receptor 2 (APOER2), which have important signaling functions in the brain. We review here the emerging role of IDOL in lipoprotein and energy metabolism, neurodegenerative diseases, and the potential for therapeutic targeting of IDOL. RECENT FINDINGS: Genetic studies suggest an association between IDOL and lipoprotein metabolism in humans. Studies in rodents and nonhuman primates support an in-vivo role for IDOL in lipoprotein metabolism, and also uncovered an unexpected role in whole-body energy metabolism. Recent evaluation of IDOL function in the brain revealed a role in memory formation and progression of Alzheimer's disease. The report of the first IDOL inhibitor may facilitate further investigations on therapeutic strategies to target IDOL. SUMMARY: IDOL is emerging as an important determinant of lipid and energy metabolism in metabolic disease as well as in Alzheimer's disease. IDOL targeting may be beneficial in treating these conditions.


Asunto(s)
Enfermedad , Salud , Proteolisis , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos
9.
Hum Mol Genet ; 26(11): 2034-2041, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28335037

RESUMEN

Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligasas/genética , Axones/metabolismo , Axones/fisiología , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/metabolismo , Exones , Femenino , Mutación del Sistema de Lectura , Pruebas Genéticas , Humanos , Masculino , Mutación , Mutación Missense/genética , Países Bajos , Dominios Proteicos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
Arterioscler Thromb Vasc Biol ; 38(8): 1785-1795, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29903737

RESUMEN

Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Hígado/enzimología , Síndrome Metabólico/prevención & control , Obesidad/prevención & control , Ubiquitina-Proteína Ligasas/deficiencia , Adipogénesis , Tejido Adiposo Pardo/enzimología , Adiposidad , Factores de Edad , Envejecimiento , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Colesterol/sangre , Modelos Animales de Enfermedad , Femenino , Insulina/sangre , Locomoción , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/enzimología , Síndrome Metabólico/genética , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Obesidad/sangre , Obesidad/enzimología , Obesidad/genética , Triglicéridos/sangre , Tirosina 3-Monooxigenasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteína Desacopladora 1/metabolismo
11.
Trends Biochem Sci ; 39(11): 527-35, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25220377

RESUMEN

An emerging theme in the regulation of cholesterol homeostasis is the role of the ubiquitin proteasome system (UPS), through which proteins are ubiquitylated and then degraded in response to specific signals. The UPS controls all aspects of cholesterol metabolism including its synthesis, uptake, and efflux. We review here recent work uncovering the ubiquitylation and degradation of key players in cholesterol homeostasis. This includes the low-density lipoprotein (LDL) receptor, transcription factors (sterol regulatory element binding proteins and liver X receptors), flux-controlling enzymes in cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase and squalene monooxygenase), and cholesterol exporters (ATP-binding cassette transporters ABCA1 and ABCG1). We explore which E3 ligases are involved, and identify areas deserving of further research.


Asunto(s)
Colesterol/metabolismo , Homeostasis , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Modelos Biológicos , Receptores de LDL/metabolismo , Escualeno-Monooxigenasa/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Immunity ; 31(2): 245-58, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19646905

RESUMEN

Effective clearance of apoptotic cells by macrophages is essential for immune homeostasis. The transcriptional pathways that allow macrophages to sense and respond to apoptotic cells are poorly defined. We found that liver X receptor (LXR) signaling was important for both apoptotic cell clearance and the maintenance of immune tolerance. Apoptotic cell engulfment activated LXR and thereby induced the expression of Mer, a receptor tyrosine kinase critical for phagocytosis. LXR-deficient macrophages exhibited a selective defect in phagocytosis of apoptotic cells and an aberrant proinflammatory response to them. As a consequence of these defects, mice lacking LXRs manifested a breakdown in self-tolerance and developed autoantibodies and autoimmune glomerulonephritis. Treatment with an LXR agonist ameliorated disease progression in a mouse model of lupus-like autoimmunity. Thus, activation of LXR by apoptotic cells engages a virtuous cycle that promotes their own clearance and couples engulfment to the suppression of inflammatory pathways.


Asunto(s)
Apoptosis/inmunología , Enfermedades Autoinmunes/inmunología , Proteínas de Unión al ADN/agonistas , Macrófagos/inmunología , Receptores Citoplasmáticos y Nucleares/agonistas , Bazo/inmunología , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Autoinmunidad/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Tolerancia Inmunológica/inmunología , Receptores X del Hígado , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos , Fagocitosis/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Transducción de Señal/inmunología , Bazo/citología , Bazo/metabolismo , Tirosina Quinasa c-Mer
13.
Circ Res ; 118(3): 410-9, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26666640

RESUMEN

RATIONALE: The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE: To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS: Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS: Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.


Asunto(s)
LDL-Colesterol/metabolismo , Endopeptidasas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Endopeptidasas/genética , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ratones Noqueados , Complejos Multienzimáticos , Unión Proteica , Proteolisis , Interferencia de ARN , Receptores de LDL/genética , Transfección , Ubiquitina Tiolesterasa , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Circ Res ; 118(2): 222-9, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26582775

RESUMEN

RATIONALE: The (pro)renin receptor ([P]RR) interacts with (pro)renin at concentrations that are >1000× higher than observed under (patho)physiological conditions. Recent studies have identified renin-angiotensin system-independent functions for (P)RR related to its association with the vacuolar H(+)-ATPase. OBJECTIVE: To uncover renin-angiotensin system-independent functions of the (P)RR. METHODS AND RESULTS: We used a proteomics-based approach to purify and identify (P)RR-interacting proteins. This resulted in identification of sortilin-1 (SORT1) as a high-confidence (P)RR-interacting protein, a finding which was confirmed by coimmunoprecipitation of endogenous (P)RR and SORT1. Functionally, silencing (P)RR expression in hepatocytes decreased SORT1 and low-density lipoprotein (LDL) receptor protein abundance and, as a consequence, resulted in severely attenuated cellular LDL uptake. In contrast to LDL, endocytosis of epidermal growth factor or transferrin remained unaffected by silencing of the (P)RR. Importantly, reduction of LDL receptor and SORT1 protein abundance occurred in the absence of changes in their corresponding transcript level. Consistent with a post-transcriptional event, degradation of the LDL receptor induced by (P)RR silencing could be reversed by lysosomotropic agents, such as bafilomycin A1. CONCLUSIONS: Our study identifies a renin-angiotensin system-independent function for the (P)RR in the regulation of LDL metabolism by controlling the levels of SORT1 and LDL receptor.


Asunto(s)
Endocitosis , Hepatocitos/metabolismo , Lipoproteínas LDL/metabolismo , Proteómica , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células CHO , Inmunoprecipitación de Cromatina , Cricetulus , Células HEK293 , Células Hep G2 , Humanos , Procesamiento Proteico-Postraduccional , Proteolisis , Proteómica/métodos , Interferencia de ARN , Receptores de Superficie Celular/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transfección , ATPasas de Translocación de Protón Vacuolares/genética
15.
Arterioscler Thromb Vasc Biol ; 37(11): 2064-2074, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28882874

RESUMEN

OBJECTIVE: The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. APPROACH AND RESULTS: We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. CONCLUSIONS: We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Colesterol/biosíntesis , Haploidia , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Proteínas Sanguíneas/genética , Sistemas CRISPR-Cas , Retículo Endoplásmico/enzimología , Estabilidad de Enzimas , Retroalimentación Fisiológica , Regulación Enzimológica de la Expresión Génica , Células Hep G2 , Hepatocitos/enzimología , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Proteínas de la Membrana/genética , Ácido Mevalónico/metabolismo , Microscopía Confocal , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Ubiquitinación
16.
Arterioscler Thromb Vasc Biol ; 37(3): 423-432, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28082258

RESUMEN

OBJECTIVE: The sterol-responsive nuclear receptors, liver X receptors α (LXRα, NR1H3) and ß (LXRß, NR1H2), are key determinants of cellular cholesterol homeostasis. LXRs are activated under conditions of high cellular sterol load and induce expression of the cholesterol efflux transporters ABCA1 and ABCG1 to promote efflux of excess cellular cholesterol. However, the full set of genes that contribute to LXR-stimulated cholesterol efflux is unknown, and their identification is the objective of this study. APPROACH AND RESULTS: We systematically compared the global transcriptional response of macrophages to distinct classes of LXR ligands. This allowed us to identify both common and ligand-specific transcriptional responses in macrophages. Among these, we identified endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1/KIAA1706) as a direct transcriptional target of LXRs in human and murine macrophages. EEPD1 specifically localizes to the plasma membrane owing to the presence of a myristoylation site in its N terminus. Accordingly, the first 10 amino acids of EEPD1 are sufficient to confer plasma membrane localization in the context of a chimeric protein with GFP. Functionally, we report that silencing expression of EEPD1 blunts maximal LXR-stimulated Apo AI-dependent efflux and demonstrate that this is the result of reduced abundance of ABCA1 protein in human and murine macrophages. CONCLUSIONS: In this study, we identify EEPD1 as a novel LXR-regulated gene in macrophages and propose that it promotes cellular cholesterol efflux by controlling cellular levels and activity of ABCA1.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Membrana Celular/enzimología , Colesterol/metabolismo , Endodesoxirribonucleasas/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/enzimología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células COS , Membrana Celular/efectos de los fármacos , Chlorocebus aethiops , Endodesoxirribonucleasas/genética , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Ligandos , Receptores X del Hígado/agonistas , Receptores X del Hígado/deficiencia , Receptores X del Hígado/genética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7 , Interferencia de ARN , Transcriptoma , Transfección
17.
J Biol Chem ; 291(9): 4813-25, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26719329

RESUMEN

Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications, ubiquitylation is reversible in a process dependent on activity of deubiquitylating enzymes (DUBs). Yet whether these play a role in cholesterol metabolism is largely unknown. As a first step to test this possibility, we used pharmacological inhibition of cellular DUB activity. Short term (2 h) inhibition of DUBs resulted in accumulation of high molecular weight ubiquitylated proteins. This was accompanied by a dramatic decrease in abundance of the LDLR and attenuated LDL uptake into hepatic cells. Importantly, this occurred in the absence of changes in the mRNA levels of the LDLR or other SREBP2-regulated genes, in line with this phenotype being a post-transcriptional event. Mechanistically, we identify transcriptional induction of the E3 ubiquitin ligase IDOL in human and rodent cells as the underlying cause for ubiquitylation-dependent lysosomal degradation of the LDLR following DUB inhibition. In contrast to the established transcriptional regulation of IDOL by the sterol-responsive liver X receptor (LXR) transcription factors, induction of IDOL by DUB inhibition is LXR-independent and occurs in Lxrαß(-/-) MEFs. Consistent with the role of DUBs in transcriptional regulation, we identified a 70-bp region in the proximal promoter of IDOL, distinct from that containing the LXR-responsive element, which mediates the response to DUB inhibition. In conclusion, we identify a sterol-independent mechanism to regulate IDOL expression and IDOL-mediated lipoprotein receptor degradation.


Asunto(s)
Lipoproteínas LDL/metabolismo , Regiones Promotoras Genéticas , Receptores de LDL/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Absorción Fisiológica/efectos de los fármacos , Sustitución de Aminoácidos , Animales , Línea Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Genes Reporteros , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Receptores X del Hígado , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/metabolismo , Ratones , Mutación , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores de LDL/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación/efectos de los fármacos
18.
Circ Res ; 115(6): 552-5, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25035151

RESUMEN

RATIONALE: Autosomal-dominant hypercholesterolemia (ADH) is characterized by elevated low-density lipoprotein cholesterol levels and increased risk for coronary vascular disease. ADH is caused by mutations in the low-density lipoprotein receptor, apolipoprotein B, or proprotein convertase subtilisin/kexin 9. A number of patients, however, suffer from familial hypercholesterolemia 4 (FH4), defined as ADH in absence of mutations in these genes and thereafter use the abbreviation FH4. OBJECTIVE: To identify a fourth locus associated with ADH. METHODS AND RESULTS: Parametric linkage analysis combined with exome sequencing in a FH4 family resulted in the identification of the variant p.Glu97Asp in signal transducing adaptor family member 1 (STAP1), encoding signal transducing adaptor family member 1. Sanger sequencing of STAP1 in 400 additional unrelated FH4 probands identified a second p.Glu97Asp carrier and 3 additional missense variants, p.Leu69Ser, p.Ile71Thr, and p.Asp207Asn. STAP1 carriers (n=40) showed significantly higher plasma total cholesterol and low-density lipoprotein cholesterol levels compared with nonaffected relatives (n=91). CONCLUSIONS: We mapped a novel ADH locus at 4p13 and identified 4 variants in STAP1 that associate with ADH.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Hiperlipoproteinemia Tipo II/genética , Mutación/genética , Adulto , Apolipoproteínas B/genética , Femenino , Ligamiento Genético , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/fisiopatología , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Proproteína Convertasa 9 , Proproteína Convertasas/genética , Receptores de LDL/genética , Serina Endopeptidasas/genética
19.
Biochim Biophys Acta ; 1843(12): 2871-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25173816

RESUMEN

Dysequilibrium syndrome (DES, OMIM 224050) is a genetically heterogeneous condition that combines autosomal recessive non-progressive cerebellar ataxia with mental retardation. The subclass dysequilibrium syndrome type 1 (CAMRQ1) has been attributed to mutations in the VLDLR gene encoding the very low density lipoprotein receptor (VLDLR). This receptor is involved in the Reelin signaling pathway that guides neuronal migration in the cerebral cortex and cerebellum. Three missense mutations (c.1459G>T; p.D487Y, c.1561G>C; p.D521H and c.2117G>T; p.C706F) have been previously identified in VLDLR gene in patients with DES. However, the functional implications of those mutations are not known and therefore we undertook detailed functional analysis to elucidate the cellular mechanisms underlying their pathogenicity. The mutations have been generated by site-directed mutagenesis and then expressed in cultured cell lines. Confocal microscopy and biochemical analysis have been employed to examine the subcellular localization and functional activities of the mutated proteins relative to wild type. Our results indicate that the three missense mutations lead to defective intracellular trafficking and ER retention of the mutant VLDLR protein. This trafficking impairment prevents the mutants from reaching the plasma membrane and binding exogenous Reelin, the initiating event in Reelin signaling. Collectively, our results provide evidence that ER quality control is involved in the functional inactivation and underlying pathogenicity of these DES-associated mutations in the VLDLR.

20.
J Cell Sci ; 126(Pt 17): 3961-71, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23813961

RESUMEN

N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Receptores de LDL/metabolismo , Enfermedad de Refsum/metabolismo , Androstenos/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Regulación hacia Abajo , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/biosíntesis , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lipoproteínas LDL/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Transporte de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño , Enfermedad de Refsum/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA