Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EMBO J ; 42(15): e113565, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37305927

RESUMEN

BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.


Asunto(s)
Nucleosomas , Proteínas Supresoras de Tumor , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ubiquitinación , Histonas/genética , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromatina
2.
EMBO J ; 42(8): e112600, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36651597

RESUMEN

Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.


Asunto(s)
Cinetocoros , Proteínas de Saccharomyces cerevisiae , Humanos , Cinetocoros/metabolismo , Histonas/genética , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Segregación Cromosómica/genética , Ploidias , Aneuploidia
3.
Mol Cell ; 72(4): 753-765.e6, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392931

RESUMEN

DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Metilación de ADN , Histonas/metabolismo , Secuencia de Aminoácidos , Proteínas Potenciadoras de Unión a CCAAT/genética , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Histonas/genética , Humanos , Unión Proteica , Dominios Proteicos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
J Proteome Res ; 22(2): 647-655, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629399

RESUMEN

Fragmentation ion spectral analysis of chemically cross-linked proteins is an established technology in the proteomics research repertoire for determining protein interactions, spatial orientation, and structure. Here we present Kojak version 2.0, a major update to the original Kojak algorithm, which was developed to identify cross-linked peptides from fragment ion spectra using a database search approach. A substantially improved algorithm with updated scoring metrics, support for cleavable cross-linkers, and identification of cross-links between 15N-labeled homomultimers are among the newest features of Kojak 2.0 presented here. Kojak 2.0 is now integrated into the Trans-Proteomic Pipeline, enabling access to dozens of additional tools within that suite. In particular, the PeptideProphet and iProphet tools for validation of cross-links improve the sensitivity and accuracy of correct cross-link identifications at user-defined thresholds. These new features improve the versatility of the algorithm, enabling its use in a wider range of experimental designs and analysis pipelines. Kojak 2.0 remains open-source and multiplatform.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Proteínas/química , Programas Informáticos , Reactivos de Enlaces Cruzados/química
5.
Anal Chem ; 94(8): 3501-3509, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35184559

RESUMEN

Drugs are often metabolized to reactive intermediates that form protein adducts. Adducts can inhibit protein activity, elicit immune responses, and cause life-threatening adverse drug reactions. The masses of reactive metabolites are frequently unknown, rendering traditional mass spectrometry-based proteomics approaches incapable of adduct identification. Here, we present Magnum, an open-mass search algorithm optimized for adduct identification, and Limelight, a web-based data processing package for analysis and visualization of data from all existing algorithms. Limelight incorporates tools for sample comparisons and xenobiotic-adduct discovery. We validate our tools with three drug/protein combinations and apply our label-free workflow to identify novel xenobiotic-protein adducts in CYP3A4. Our new methods and software enable accurate identification of xenobiotic-protein adducts with no prior knowledge of adduct masses or protein targets. Magnum outperforms existing label-free tools in xenobiotic-protein adduct discovery, while Limelight fulfills a major need in the rapidly developing field of open-mass searching, which until now lacked comprehensive data visualization tools.


Asunto(s)
Proteínas , Proteómica , Algoritmos , Aductos de ADN , Espectrometría de Masas/métodos , Proteínas/análisis , Proteómica/métodos , Programas Informáticos
6.
PLoS Genet ; 15(10): e1008423, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31584935

RESUMEN

Accurate segregation of chromosomes to daughter cells is a critical aspect of cell division. It requires the kinetochores on duplicated chromosomes to biorient, attaching to microtubules from opposite poles of the cell. Bioriented attachments come under tension, while incorrect attachments lack tension and must be released to allow proper attachments to form. A well-studied error correction pathway is mediated by the Aurora B kinase, which destabilizes low tension-bearing attachments. We recently discovered that in vitro, kinetochores display an additional intrinsic tension-sensing pathway that utilizes Stu2. The contribution of kinetochore-associated Stu2 to error correction in cells, however, was unknown. Here, we identify a Stu2 mutant that abolishes its kinetochore function and show that it causes biorientation defects in vivo. We also show that this Stu2-mediated pathway functions together with the Aurora B-mediated pathway. Altogether, our work indicates that cells employ multiple pathways to ensure biorientation and the accuracy of chromosome segregation.


Asunto(s)
Aurora Quinasas/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aurora Quinasas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 115(11): 2740-2745, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487209

RESUMEN

Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore-microtubule attachments in vivo. While purified Ska complex tracks with disassembling microtubule tips, it remains unclear whether the Ska complex-microtubule interaction is sufficiently strong to make a significant contribution to kinetochore-microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore-microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular , Segregación Cromosómica , Proteínas del Citoesqueleto , Humanos , Cinetocoros/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética , Proteínas Nucleares/genética , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 115(7): E1409-E1418, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29386393

RESUMEN

Arp2/3 complex nucleates branched actin filaments important for cellular motility and endocytosis. WASP family proteins are Arp2/3 complex activators that play multiple roles in branching nucleation, but little is known about the structural bases of these WASP functions, owing to an incomplete understanding of how WASP binds Arp2/3 complex. Recent data show WASP binds two sites, and biochemical and structural studies led to models in which the WASP C segment engages the barbed ends of the Arp3 and Arp2 subunits while the WASP A segment binds the back side of the complex on Arp3. However, electron microscopy reconstructions showed density for WASP inconsistent with these models on the opposite (front) side of Arp2/3 complex. Here we use chemical cross-linking and mass spectrometry (XL-MS) along with computational docking and structure-based mutational analysis to map the two WASP binding sites on the complex. Our data corroborate the barbed end and back side binding models and show one WASP binding site on Arp3, on the back side of the complex, and a second site on the bottom of the complex, spanning Arp2 and ARPC1. The XL-MS-identified cross-links rule out the front side binding model and show that the A segment of WASP binds along the bottom side of the ARPC1 subunit, instead of at the Arp2/ARPC1 interface, as suggested by FRET experiments. The identified binding sites support the Arp3 tail release model to explain WASP-mediated activating conformational changes in Arp2/3 complex and provide insight into the roles of WASP in branching nucleation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/química , Secuencia de Aminoácidos , Sitios de Unión , Unión Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia , Proteína del Síndrome de Wiskott-Aldrich/química
9.
J Proteome Res ; 18(2): 759-764, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30525651

RESUMEN

Proxl is an open-source web application for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data and results. Proxl's core features include comparing data sets, structural analysis, customizable and interactive data visualizations, access to all underlying mass spectrometry data, and quality-control tools. All features of Proxl are designed to be independent of specific cross-linker chemistry or software analysis pipelines. Proxl's sharing tools allow users to share their data with the public or securely restrict access to trusted collaborators. Since being published in 2016, Proxl has continued to be expanded and improved through active development and collaboration with cross-linking researchers. Some of Proxl's new features include a centralized, public site for sharing data, greatly expanded quality-control tools and visualizations, support for stable isotope-labeled peptides, and general improvements that make Proxl easier to use, data easier to share and import, and data visualizations more customizable. Source code and more information are found at http://proxl-ms.org/ .


Asunto(s)
Bases de Datos de Proteínas , Difusión de la Información/métodos , Proteómica/métodos , Programas Informáticos , Espectrometría de Masas , Control de Calidad , Interfaz Usuario-Computador
10.
Mol Pharmacol ; 93(5): 489-503, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29476041

RESUMEN

The clearance of retinoic acid (RA) and its metabolites is believed to be regulated by the CYP26 enzymes, but the specific roles of CYP26A1, CYP26B1, and CYP26C1 in clearing active vitamin A metabolites have not been defined. The goal of this study was to establish the substrate specificity of CYP26C1, and determine whether CYP26C1 interacts with cellular retinoic acid binding proteins (CRABPs). CYP26C1 was found to effectively metabolize all-trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid, and 4-oxo-atRA with the highest intrinsic clearance toward 9-cis-RA. In comparison with CYP26A1 and CYP26B1, CYP26C1 resulted in a different metabolite profile for retinoids, suggesting differences in the active-site structure of CYP26C1 compared with other CYP26s. Homology modeling of CYP26C1 suggested that this is attributable to the distinct binding orientation of retinoids within the CYP26C1 active site. In comparison with other CYP26 family members, CYP26C1 was up to 10-fold more efficient in clearing 4-oxo-atRA (intrinsic clearance 153 µl/min/pmol) than CYP26A1 and CYP26B1, suggesting that CYP26C1 may be important in clearing this active retinoid. In support of this, CRABPs delivered 4-oxo-atRA and atRA for metabolism by CYP26C1. Despite the tight binding of 4-oxo-atRA and atRA with CRABPs, the apparent Michaelis-Menten constant in biological matrix (Km) value of these substrates with CYP26C1 was not increased when the substrates were bound with CRABPs, in contrast to what is predicted by free drug hypothesis. Together these findings suggest that CYP26C1 is a 4-oxo-atRA hydroxylase and may be important in regulating the concentrations of this active retinoid in human tissues.


Asunto(s)
Familia 26 del Citocromo P450/metabolismo , Retinoides/metabolismo , Proteínas Celulares de Unión al Retinol/metabolismo , Familia 26 del Citocromo P450/química , Homeostasis , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Celulares de Unión al Retinol/aislamiento & purificación , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 112(41): E5583-9, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26430240

RESUMEN

Multiple protein subcomplexes of the kinetochore cooperate as a cohesive molecular unit that forms load-bearing microtubule attachments that drive mitotic chromosome movements. There is intriguing evidence suggesting that central kinetochore components influence kinetochore-microtubule attachment, but the mechanism remains unclear. Here, we find that the conserved Mis12/MIND (Mtw1, Nsl1, Nnf1, Dsn1) and Ndc80 (Ndc80, Nuf2, Spc24, Spc25) complexes are connected by an extensive network of contacts, each essential for viability in cells, and collectively able to withstand substantial tensile load. Using a single-molecule approach, we demonstrate that an individual MIND complex enhances the microtubule-binding affinity of a single Ndc80 complex by fourfold. MIND itself does not bind microtubules. Instead, MIND binds Ndc80 complex far from the microtubule-binding domain and confers increased microtubule interaction of the complex. In addition, MIND activation is redundant with the effects of a mutation in Ndc80 that might alter its ability to adopt a folded conformation. Together, our results suggest a previously unidentified mechanism for regulating microtubule binding of an outer kinetochore component by a central kinetochore complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Complejos Multiproteicos/genética , Mutación , Estructura Terciaria de Proteína
12.
J Proteome Res ; 15(8): 2863-70, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27302480

RESUMEN

ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app .


Asunto(s)
Bases de Datos de Proteínas , Difusión de la Información/métodos , Internet , Espectrometría de Masas , Reactivos de Enlaces Cruzados , Colaboración Intersectorial , Interfaz Usuario-Computador
13.
J Struct Biol ; 194(3): 303-10, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26968363

RESUMEN

Modeling protein complex structures based on distantly related homologues can be challenging due to poor sequence and structure conservation. Therefore, utilizing even low-resolution experimental data can significantly increase model precision and accuracy. Here, we present models of the two key functional states of the yeast γ-tubulin small complex (γTuSC): one for the low-activity "open" state and another for the higher-activity "closed" state. Both models were computed based on remotely related template structures and cryo-EM density maps at 6.9Šand 8.0Šresolution, respectively. For each state, extensive sampling of alignments and conformations was guided by the fit to the corresponding cryo-EM density map. The resulting good-scoring models formed a tightly clustered ensemble of conformations in most regions. We found significant structural differences between the two states, primarily in the γ-tubulin subunit regions where the microtubule binds. We also report a set of chemical cross-links that were found to be consistent with equilibrium between the open and closed states. The protocols developed here have been incorporated into our open-source Integrative Modeling Platform (IMP) software package (http://integrativemodeling.org), and can therefore be applied to many other systems.


Asunto(s)
Proteínas Fúngicas/química , Tubulina (Proteína)/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Programas Informáticos , Homología Estructural de Proteína
14.
J Pharmacol Exp Ther ; 357(2): 281-92, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26937021

RESUMEN

Cytochrome P450 (CYP) 26A1 and 26B1 are heme-containing enzymes responsible for metabolizing all-trans retinoic acid (at-RA). No crystal structures have been solved, and therefore homology models that provide structural information are extremely valuable for the development of inhibitors of cytochrome P450 family 26 (CYP26). The objectives of this study were to use homology models of CYP26A1 and CYP26B1 to characterize substrate binding characteristics, to compare structural aspects of their active sites, and to support the role of CYP26 in the metabolism of xenobiotics. Each model was verified by dockingat-RA in the active site and comparing the results to known metabolic profiles ofat-RA. The models were then used to predict the metabolic sites of tazarotenic acid with results verified by in vitro metabolite identification experiments. The CYP26A1 and CYP26B1 homology models predicted that the benzothiopyranyl moiety of tazarotenic acid would be oriented toward the heme of each enzyme and suggested that tazarotenic acid would be a substrate of CYP26A1 and CYP26B1. Metabolite identification experiments indicated that CYP26A1 and CYP26B1 oxidatively metabolized tazarotenic acid on the predicted moiety, with in vitro rates of metabolite formation by CYP26A1 and CYP26B1 being the highest across a panel of enzymes. Molecular analysis of the active sites estimated the active-site volumes of CYP26A1 and CYP26B1 to be 918 Å(3)and 977 Å(3), respectively. Overall, the homology models presented herein describe the enzyme characteristics leading to the metabolism of tazarotenic acid by CYP26A1 and CYP26B1 and support a potential role for the CYP26 enzymes in the metabolism of xenobiotics.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Nicotínicos/metabolismo , Xenobióticos/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Sistema Enzimático del Citocromo P-450/química , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Preparaciones Farmacéuticas/metabolismo , Receptores de Ácido Retinoico/agonistas , Ácido Retinoico 4-Hidroxilasa , Especificidad por Sustrato , Tretinoina/metabolismo
15.
Nature ; 466(7308): 879-82, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20631709

RESUMEN

Microtubules are nucleated in vivo by gamma-tubulin complexes. The 300-kDa gamma-tubulin small complex (gamma-TuSC), consisting of two molecules of gamma-tubulin and one copy each of the accessory proteins Spc97 and Spc98, is the conserved, essential core of the microtubule nucleating machinery. In metazoa multiple gamma-TuSCs assemble with other proteins into gamma-tubulin ring complexes (gamma-TuRCs). The structure of gamma-TuRC indicated that it functions as a microtubule template. Because each gamma-TuSC contains two molecules of gamma-tubulin, it was assumed that the gamma-TuRC-specific proteins are required to organize gamma-TuSCs to match 13-fold microtubule symmetry. Here we show that Saccharomyces cerevisiae gamma-TuSC forms rings even in the absence of other gamma-TuRC components. The yeast adaptor protein Spc110 stabilizes the rings into extended filaments and is required for oligomer formation under physiological buffer conditions. The 8-A cryo-electron microscopic reconstruction of the filament reveals 13 gamma-tubulins per turn, matching microtubule symmetry, with plus ends exposed for interaction with microtubules, implying that one turn of the filament constitutes a microtubule template. The domain structures of Spc97 and Spc98 suggest functions for conserved sequence motifs, with implications for the gamma-TuRC-specific proteins. The gamma-TuSC filaments nucleate microtubules at a low level, and the structure provides a strong hypothesis for how nucleation is regulated, converting this less active form to a potent nucleator.


Asunto(s)
Microtúbulos/química , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura , Tampones (Química) , Proteínas de Unión a Calmodulina , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo
16.
J Proteome Res ; 14(5): 2190-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25812159

RESUMEN

Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies; however, complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms and can identify cross-linked peptides using many different chemical cross-linkers with or without heavy isotope labels. Kojak was used to analyze both novel and existing data sets and was compared to existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms and, equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing data sets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods.


Asunto(s)
Algoritmos , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Proteómica/estadística & datos numéricos , Programas Informáticos , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/química , Criptocromos/química , Bases de Datos de Proteínas , Proteínas F-Box/química , Humanos , Datos de Secuencia Molecular , Proteómica/economía , Proteómica/métodos , Proteínas Quinasas Asociadas a Fase-S/química , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Espectrometría de Masas en Tándem , Factores de Tiempo
17.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617353

RESUMEN

Centrosomes are the principal microtubule-organizing centers of the cell and play an essential role in mitotic spindle function. Centrosome biogenesis is achieved by strict control of protein acquisition and phosphorylation prior to mitosis. Defects in this process promote fragmentation of pericentriolar material culminating in multipolar spindles and chromosome missegregation. Centriolar satellites, membrane-less aggrupations of proteins involved in the trafficking of proteins toward and away from the centrosome, are thought to contribute to centrosome biogenesis. Here we show that the microtubule plus-end directed kinesin motor Kif9 localizes to centriolar satellites and regulates their pericentrosomal localization during interphase. Lack of Kif9 leads to aggregation of satellites closer to the centrosome and increased centrosomal protein degradation that disrupts centrosome maturation and results in chromosome congression and segregation defects during mitosis. Our data reveal roles for Kif9 and centriolar satellites in the regulation of cellular proteostasis and mitosis.

18.
J Cell Biol ; 221(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35353161

RESUMEN

Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.


Asunto(s)
Cinetocoros , Proteínas Asociadas a Microtúbulos , Microtúbulos , Mitosis , Proteínas de Saccharomyces cerevisiae , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares , Fosforilación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Structure ; 30(9): 1269-1284.e6, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716664

RESUMEN

RING-between-RING (RBR) E3 ligases mediate ubiquitin transfer through an obligate E3-ubiquitin thioester intermediate prior to substrate ubiquitination. Although RBRs share a conserved catalytic module, substrate recruitment mechanisms remain enigmatic, and the relevant domains have yet to be identified for any member of the class. Here we characterize the interaction between the auto-inhibited RBR, HHARI (AriH1), and its target protein, 4EHP, using a combination of XL-MS, HDX-MS, NMR, and biochemical studies. The results show that (1) a di-aromatic surface on the catalytic HHARI Rcat domain forms a binding platform for substrates and (2) a phosphomimetic mutation on the auto-inhibitory Ariadne domain of HHARI promotes release and reorientation of Rcat for transthiolation and substrate modification. The findings identify a direct binding interaction between a RING-between-RING ligase and its substrate and suggest a general model for RBR substrate recognition.


Asunto(s)
Proteínas Cullin , Ubiquitina , Dominio Catalítico , Proteínas Cullin/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
20.
Elife ; 102021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949948

RESUMEN

Microtubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies, which associate helically to template MT growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here, we combine crosslinking mass spectrometry, X-ray crystallography, and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding site in the human γTuRC structure at the interface between GCP2 and GCP6 allows for the interpretation of significant structural changes arising from CM1 helix binding to metazoan γTuRC.


Asunto(s)
Antígenos Nucleares/genética , Microtúbulos/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Sitios de Unión , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Espectrometría de Masas/métodos , Centro Organizador de los Microtúbulos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/clasificación , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA