Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Invertebr Pathol ; 203: 108059, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199517

RESUMEN

Beauveria bassiana, a well-known filamentous biocontrol fungus, is the main pathogen of numerous field and forest pests. To explore the potential factors involved in the fungal pathogenicity, Bbhox2, an important and conserved functional transcription factor containing homeodomain was carried out by functional analysis. Homologous recombination was used to disrupt the Bbhox2 gene in B.bassiana. The conidia yield of the deletant fungal strain was significantly reduced. The conidial germination was faster, and stress tolerance to Congo red and high osmotic agents were decreased compared with that in the wildtype. Additionally, ΔBbhox2 showed a dramatic reduction in virulence no matter in topical inoculations or in intra-hemolymph injections against Galleria mellonella larvae, which is likely due to the failure of appressorium formation and the defect in producing hyphal body. These results indicate that the Bbhox2 gene markedly contributes to conidiation and pathogenicity in B. bassiana.


Asunto(s)
Beauveria , Mariposas Nocturnas , Animales , Virulencia , Beauveria/genética , Mariposas Nocturnas/microbiología , Larva/microbiología , Esporas Fúngicas/genética , Proteínas Fúngicas/genética
2.
Nat Commun ; 15(1): 5130, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879536

RESUMEN

Intron retention (IR) is the most common alternative splicing event in Arabidopsis. An increasing number of studies have demonstrated the major role of IR in gene expression regulation. The impacts of IR on plant growth and development and response to environments remain underexplored. Here, we found that IR functions directly in gene expression regulation on a genome-wide scale through the detainment of intron-retained transcripts (IRTs) in the nucleus. Nuclear-retained IRTs can be kept away from translation through this mechanism. COP1-dependent light modulation of the IRTs of light signaling genes, such as PIF4, RVE1, and ABA3, contribute to seedling morphological development in response to changing light conditions. Furthermore, light-induced IR changes are under the control of the spliceosome, and in part through COP1-dependent ubiquitination and degradation of DCS1, a plant-specific spliceosomal component. Our data suggest that light regulates the activity of the spliceosome and the consequent IRT nucleus detainment to modulate photomorphogenesis through COP1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Regulación de la Expresión Génica de las Plantas , Intrones , Luz , Empalmosomas , Ubiquitina-Proteína Ligasas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Intrones/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Empalmosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Núcleo Celular/metabolismo , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de la radiación , Plantones/metabolismo , Empalme Alternativo , Ubiquitinación
3.
Front Plant Sci ; 13: 971230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161016

RESUMEN

The fruit development and ripening process involve a series of changes regulated by fine-tune gene expression at the transcriptional level. Acetylation levels of histones on lysine residues are dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), which play an essential role in the control of gene expression. However, their role in regulating fruit development and ripening process, especially in pepper (Capsicum annuum), a typical non-climacteric fruit, remains to understand. Herein, we performed genome-wide analyses of the HDAC and HAT family in the pepper, including phylogenetic analysis, gene structure, encoding protein conserved domain, and expression assays. A total of 30 HAT and 15 HDAC were identified from the pepper genome and the number of gene differentiation among species. The sequence and phylogenetic analysis of CaHDACs and CaHATs compared with other plant HDAC and HAT proteins revealed gene conserved and potential genus-specialized genes. Furthermore, fruit developmental trajectory expression profiles showed that CaHDAC and CaHAT genes were differentially expressed, suggesting that some are functionally divergent. The integrative analysis allowed us to propose CaHDAC and CaHAT candidates to be regulating fruit development and ripening-related phytohormone metabolism and signaling, which also accompanied capsaicinoid and carotenoid biosynthesis. This study provides new insights into the role of histone modification mediate development and ripening in non-climacteric fruits.

4.
Front Genet ; 12: 719204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484306

RESUMEN

Retrocopies, which are considered "junk genes," are occasionally formed via the insertion of reverse-transcribed mRNAs at new positions in the genome. However, an increasing number of recent studies have shown that some retrocopies exhibit new biological functions and may contribute to genome evolution. Hence, the identification of retrocopies has become very meaningful for studying gene duplication and new gene generation. Current pipelines identify retrocopies through complex operations using alignment programs and filter scripts in a step-by-step manner. Therefore, there is an urgent need for a simple and convenient retrocopy annotation tool. Here, we report the development of RetroScan, a publicly available and easy-to-use tool for scanning, annotating and displaying retrocopies, consisting of two components: an analysis pipeline and a visual interface. The pipeline integrates a series of bioinformatics software programs and scripts for identifying retrocopies in just one line of command. Compared with previous methods, RetroScan increases accuracy and reduces false-positive results. We also provide a Shiny app for visualization. It displays information on retrocopies and their parental genes that can be used for the study of retrocopy structure and evolution. RetroScan is available at https://github.com/Vicky123wzy/RetroScan.

5.
Comput Struct Biotechnol J ; 19: 600-611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510865

RESUMEN

Retroduplication variation (RDV), a type of retrocopy polymorphism, is considered to have essential biological significance, but its effect on gene function and species phenotype is still poorly understood. To this end, we analyzed the retrocopies and RDVs in 3,010 rice genomes. We calculated the RDV frequencies in the genome of each rice population; detected the mutated, ancestral and expressed retrogenes in rice genomes; and analyzed their RDV influence on rice phenotypic traits. Collectively, 73 RDVs were identified, and 14 RDVs in ancestral retrogenes can significantly affect rice phenotypes. Our research reveals that RDV plays an important role in rice migration, domestication and evolution. We think that RDV is a good molecular breeding marker candidate. To our knowledge, this is the first study on the relationship between retrogene function, expression, RDV and species phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA