RESUMEN
The dorsal raphe nucleus (DRN) has previously been proved to be involved in the regulation of the sleep-wake behavior. DRN contains several neuron types, such as 5-HTergic and GABAergic neurons. GABAergic neurons, which are the second largest cell subtype in the DRN, participate in a variety of neurophysiological functions. However, their role in sleep-wake regulation and the underlying neural circuitry remains unclear. Herein, we used fiber photometry and synchronous electroencephalogram (EEG)/electromyography (EMG) recording to demonstrate that DRN GABAergic neurons exhibit high activities during wakefulness and low activities during NREM sleep. Short-term optogenetic activation of DRN GABAergic neurons reduced the latency of NREM-to-wake transition and increased the probability of wakefulness, while long-term optogenetic activation of these neurons significantly increased the amount of wakefulness. Chemogenetic activation of DRN GABAergic neurons increased wakefulness for almost 2 h and maintained long-lasting arousal. In addition, inhibition of DRN GABAergic neurons with chemogenetics caused a reduction in the amount of wakefulness. Finally, similar to the effects of activating the soma of DRN GABAergic neurons, optogenetic stimulation of their terminals in the ventral tegmental area (VTA) induced instant arousal and promoted wakefulness. Taken together, our results illustrated that DRN GABAergic neurons are vital to the induction and maintenance of wakefulness, which promote wakefulness through the GABAergic DRN-VTA pathway.
Asunto(s)
Núcleo Dorsal del Rafe , Área Tegmental Ventral , Área Tegmental Ventral/metabolismo , Vigilia/fisiología , Sueño/fisiología , Neuronas GABAérgicas/fisiologíaRESUMEN
In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep-wake behavior. However, the specific role of VTA glutamatergic neurons in sleep-wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.