Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 569(7756): 418-422, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068698

RESUMEN

Prompt coronary catheterization and revascularization have markedly improved the outcomes of myocardial infarction, but have also resulted in a growing number of surviving patients with permanent structural damage of the heart, which frequently leads to heart failure. There is an unmet clinical need for treatments for this condition1, particularly given the inability of cardiomyocytes to replicate and thereby regenerate the lost contractile tissue2. Here we show that expression of human microRNA-199a in infarcted pig hearts can stimulate cardiac repair. One month after myocardial infarction and delivery of this microRNA through an adeno-associated viral vector, treated animals showed marked improvements in both global and regional contractility, increased muscle mass and reduced scar size. These functional and morphological findings correlated with cardiomyocyte de-differentiation and proliferation. However, subsequent persistent and uncontrolled expression of the microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were concurrent with myocardial infiltration of proliferating cells displaying a poorly differentiated myoblastic phenotype. These results show that achieving cardiac repair through the stimulation of endogenous cardiomyocyte proliferation is attainable in large mammals, however dosage of this therapy needs to be tightly controlled.


Asunto(s)
Muerte Súbita Cardíaca/etiología , MicroARNs/efectos adversos , MicroARNs/genética , MicroARNs/uso terapéutico , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Sus scrofa/genética , Animales , Proliferación Celular/genética , Corazón/fisiología , Corazón/fisiopatología , Masculino , MicroARNs/administración & dosificación , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Regeneración/genética
2.
J Pathol ; 259(3): 254-263, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651103

RESUMEN

SARS-CoV-2 infection is clinically heterogeneous, ranging from asymptomatic to deadly. A few patients with COVID-19 appear to recover from acute viral infection but nevertheless progress in their disease and eventually die, despite persistent negativity at molecular tests for SARS-CoV-2 RNA. Here, we performed post-mortem analyses in 27 consecutive patients who had apparently recovered from COVID-19 but had progressively worsened in their clinical conditions despite repeated viral negativity in nasopharyngeal swabs or bronchioalveolar lavage for 11-300 consecutive days (average: 105.5 days). Three of these patients remained PCR-negative for over 9 months. Post-mortem analysis revealed evidence of diffuse or focal interstitial pneumonia in 23/27 (81%) patients, accompanied by extensive fibrotic substitution in 13 cases (47%). Despite apparent virological remission, lung pathology was similar to that observed in acute COVID-19 individuals, including micro- and macro-vascular thrombosis (67% of cases), vasculitis (24%), squamous metaplasia of the respiratory epithelium (30%), frequent cytological abnormalities and syncytia (67%), and the presence of dysmorphic features in the bronchial cartilage (44%). Consistent with molecular test negativity, SARS-CoV-2 antigens were not detected in the respiratory epithelium. In contrast, antibodies against both spike and nucleocapsid revealed the frequent (70%) infection of bronchial cartilage chondrocytes and para-bronchial gland epithelial cells. In a few patients (19%), we also detected positivity in vascular pericytes and endothelial cells. Quantitative RT-PCR amplification in tissue lysates confirmed the presence of viral RNA. Together, these findings indicate that SARS-CoV-2 infection can persist significantly longer than suggested by standard PCR-negative tests, with specific infection of specific cell types in the lung. Whether these persistently infected cells also play a pathogenic role in long COVID remains to be addressed. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Viral/genética , Células Endoteliales , Síndrome Post Agudo de COVID-19
3.
Brain ; 146(3): 1175-1185, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642091

RESUMEN

Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Femenino , Humanos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus , Hemorragia
4.
FASEB J ; 35(12): e22031, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767636

RESUMEN

Loss of skeletal muscle mass and force is of critical importance in numerous pathologies, like age-related sarcopenia or cancer. It has been shown that the Akt-mTORC1 pathway is critical for stimulating adult muscle mass and function, however, it is unknown if mTORC1 is the only mediator downstream of Akt and which intracellular processes are required for functional muscle growth. Here, we show that loss of Raptor reduces muscle hypertrophy after Akt activation and completely prevents increases in muscle force. Interestingly, the residual hypertrophy after Raptor deletion can be completely prevented by administration of the mTORC1 inhibitor rapamycin. Using a quantitative proteomics approach we find that loss of Raptor affects the increases in mitochondrial proteins, while rapamycin mainly affects ribosomal proteins. Taken together, these results suggest that mTORC1 is the key mediator of Akt-dependent muscle growth and its regulation of the mitochondrial proteome is critical for increasing muscle force.


Asunto(s)
Hipertrofia/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteína Reguladora Asociada a mTOR/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Músculo Esquelético/patología , Fosforilación , Proteoma/análisis , Transducción de Señal
5.
Brain ; 144(10): 3175-3190, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33974044

RESUMEN

Brain cholesterol is produced mainly by astrocytes and is important for neuronal function. Its biosynthesis is severely reduced in mouse models of Huntington's disease. One possible mechanism is a diminished nuclear translocation of the transcription factor sterol regulatory element-binding protein 2 (SREBP2) and, consequently, reduced activation of SREBP2-controlled genes in the cholesterol biosynthesis pathway. Here we evaluated the efficacy of a gene therapy based on the unilateral intra-striatal injection of a recombinant adeno-associated virus 2/5 (AAV2/5) targeting astrocytes specifically and carrying the transcriptionally active N-terminal fragment of human SREBP2 (hSREBP2). Robust hSREBP2 expression in striatal glial cells in R6/2 Huntington's disease mice activated the transcription of cholesterol biosynthesis pathway genes, restored synaptic transmission, reversed dopamine receptor D2 (Drd2) transcript levels decline, cleared mutant huntingtin aggregates and attenuated behavioural deficits. We conclude that glial SREBP2 participates in Huntington's disease brain pathogenesis in vivo and that AAV-based delivery of SREBP2 to astrocytes counteracts key features of the disease.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Enfermedad de Huntington/terapia , Proteína 2 de Unión a Elementos Reguladores de Esteroles/administración & dosificación , Animales , Astrocitos/patología , Cuerpo Estriado/patología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Fenotipo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/biosíntesis , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
6.
J Gen Virol ; 101(1): 73-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31702541

RESUMEN

Dengue virus (DENV) remains a significant healthcare and socioeconomic burden for endemic countries. Attempts to produce a safe and effective vaccine have been unsuccessful so far, making this task one of the top priorities in the field. We have previously shown that an EDIII-based DNA vaccine is able to induce neutralizing, long-lasting and highly specific antibody responses for all four DENV serotypes in mice using gene-gun delivery technology. Here, we describe the use of recombinant Adeno-associated viral vectors as an alternative DNA delivery platform, in combination with different immunization schedules, to simplify the vaccination protocol without compromising the induction of neutralizing antibody responses. Our results demonstrate that using viral vectored-platforms to deliver genetic vaccines could potentially reduce the number of doses required to induce a sustained DENV-neutralizing response, thus facilitating the implementation and deployment of the vaccine in developing countries.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dependovirus/inmunología , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Dengue/inmunología , Dengue/virología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Serogrupo , Vacunación/métodos , Proteínas del Envoltorio Viral/inmunología
7.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30559069

RESUMEN

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.


Asunto(s)
Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo , Trasplante de Corazón/métodos , MicroARNs/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatías/genética , Proliferación Celular/fisiología , Insuficiencia Cardíaca/genética , Humanos , Ratones , MicroARNs/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Remodelación Ventricular/genética , Remodelación Ventricular/fisiología
8.
Hum Mol Genet ; 26(1): 33-43, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28013292

RESUMEN

We performed whole exome sequencing in individuals from a family with autosomal dominant gastropathy resembling Ménétrier disease, a premalignant gastric disorder with epithelial hyperplasia and enhanced EGFR signalling. Ménétrier disease is believed to be an acquired disorder, but its aetiology is unknown. In affected members, we found a missense p.V742G variant in MIB2, a gene regulating NOTCH signalling that has not been previously linked to human diseases. The variant segregated with the disease in the pedigree, affected a highly conserved amino acid residue, and was predicted to be deleterious although it was found with a low frequency in control individuals. The purified protein carrying the p.V742G variant showed reduced ubiquitination activity in vitro and white blood cells from affected individuals exhibited significant reductions of HES1 and NOTCH3 expression reflecting alteration of NOTCH signalling. Because mutations of MIB1, the homolog of MIB2, have been found in patients with left ventricle non-compaction (LVNC), we investigated members of our family with Ménétrier-like disease for this cardiac abnormality. Asymptomatic left ventricular hypertrabeculation, the mildest end of the LVNC spectrum, was detected in two members carrying the MIB2 variant. Finally, we identified an additional MIB2 variant (p.V984L) affecting protein stability in an unrelated isolated case with LVNC. Expression of both MIB2 variants affected NOTCH signalling, proliferation and apoptosis in primary rat cardiomyocytes.In conclusion, we report the first example of left ventricular hypertrabeculation/LVNC with germline MIB2 variants resulting in altered NOTCH signalling that might be associated with a gastropathy clinically overlapping with Ménétrier disease.


Asunto(s)
Cardiomiopatías/patología , Gastritis Hipertrófica/patología , Mutación Missense/genética , Receptores Notch/metabolismo , Gastropatías/patología , Ubiquitina-Proteína Ligasas/genética , Disfunción Ventricular Izquierda/patología , Animales , Animales Recién Nacidos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Exoma/genética , Femenino , Gastritis Hipertrófica/etiología , Gastritis Hipertrófica/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Linaje , Fenotipo , Ratas , Receptores Notch/genética , Transducción de Señal , Gastropatías/etiología , Gastropatías/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo
9.
Circ Res ; 121(10): 1168-1181, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-28851809

RESUMEN

RATIONALE: CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)-based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized. OBJECTIVE: To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice. METHODS AND RESULTS: We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6, Sav1, and Tbx20, using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1, which increased the editing efficiency. CONCLUSIONS: Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo.


Asunto(s)
Sistemas CRISPR-Cas/genética , Dependovirus/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Miocitos Cardíacos/fisiología , ARN Guía de Kinetoplastida/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células 3T3 NIH , ARN Guía de Kinetoplastida/administración & dosificación
10.
Proc Natl Acad Sci U S A ; 113(2): 338-43, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26719419

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.


Asunto(s)
Envejecimiento/genética , Sistemas CRISPR-Cas/genética , Eliminación de Gen , Miocardio/metabolismo , Animales , Cardiomegalia/complicaciones , Cardiomegalia/patología , Separación Celular , Dependovirus/metabolismo , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Ratones Transgénicos , Modelos Animales , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Especificidad de Órganos/genética , ARN Guía de Kinetoplastida/metabolismo
11.
J Cell Mol Med ; 22(11): 5583-5595, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30138533

RESUMEN

Cardiospheres (CSps) are self-assembling clusters of a heterogeneous population of poorly differentiated cells outgrowing from in vitro cultured cardiac explants. Scanty information is available on the molecular pathways regulating CSp growth and their differentiation potential towards cardiac and vascular lineages. Here we report that Notch1 stimulates a massive increase in both CSp number and size, inducing a peculiar gene expression programme leading to a cardiovascular molecular signature. These effects were further enhanced using Adeno-Associated Virus (AAV)-based gene transfer of activated Notch1-intracellular domain (N1-ICD) or soluble-Jagged1 (sJ1) ligand to CSp-forming cells. A peculiar effect was exploited by selected pro-proliferating miRNAs: hsa-miR-590-3p induced a cardiovascular gene expression programme, while hsa-miR-199a-3p acted as the most potent stimulus for the activation of the Notch pathway, thus showing that, unlike in adult cardiomyocytes, these miRNAs involve Notch signalling activation in CSps. Our results identify Notch1 as a crucial regulator of CSp growth and differentiation along the vascular lineage, raising the attracting possibility that forced activation of this pathway might be exploited to promote in vitro CSp expansion as a tool for toxicology screening and cell-free therapeutic strategies.


Asunto(s)
Proteína Jagged-1/genética , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Receptor Notch1/genética , Proteínas de Unión al Calcio/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Dependovirus , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Humanos , Miocitos Cardíacos/fisiología , Transducción de Señal/genética , Transfección
12.
Circulation ; 136(16): 1509-1524, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28754835

RESUMEN

BACKGROUND: Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. METHODS: An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. RESULTS: The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. CONCLUSIONS: These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium.


Asunto(s)
Citocinas/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/cirugía , Miocardio/metabolismo , Regeneración , Animales , Apoptosis , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Quinasa 1 de Adhesión Focal/metabolismo , Biblioteca de Genes , Vectores Genéticos , Supervivencia de Injerto , Masculino , Ratones Endogámicos C57BL , Contracción Miocárdica , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Recuperación de la Función , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Tiempo , Transducción Genética , Transfección/métodos
13.
Stem Cells ; 35(7): 1733-1746, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28436144

RESUMEN

Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or in pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. Unacylated ghrelin (UnAG) is a circulating hormone that protects muscle from atrophy, promotes myoblast differentiation, and enhances ischemia-induced muscle regeneration. Here we show that UnAG increases SC activity and stimulates Par polarity complex/p38-mediated asymmetric division, fostering both SC self-renewal and myoblast differentiation. Because of those activities on different steps of muscle regeneration, we hypothesized a beneficial effect of UnAG in mdx dystrophic mice, in which the absence of dystrophin leads to chronic muscle degeneration, defective muscle regeneration, fibrosis, and, at later stages of the pathology, SC pool exhaustion. Upregulation of UnAG levels in mdx mice reduces muscle degeneration, improves muscle function, and increases dystrophin-null SC self-renewal, maintaining the SC pool. Our results suggest that UnAG has significant therapeutic potential for preserving the muscles in dystrophies. Stem Cells 2017;35:1733-1746.


Asunto(s)
Distrofina/genética , Ghrelina/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Acilación , Animales , Recuento de Células , Diferenciación Celular , Distrofina/metabolismo , Fibrosis , Regulación de la Expresión Génica , Ghrelina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Fenotipo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Nature ; 492(7429): 376-81, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23222520

RESUMEN

In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.


Asunto(s)
MicroARNs/análisis , MicroARNs/genética , Miocardio/citología , Regeneración/genética , Animales , Proliferación Celular , Citocinesis , ADN/biosíntesis , Regulación hacia Abajo , Biblioteca de Genes , Terapia Genética , Corazón/crecimiento & desarrollo , Humanos , Ratones , MicroARNs/uso terapéutico , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Infarto del Miocardio/terapia , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
15.
Proc Natl Acad Sci U S A ; 112(36): 11276-81, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305933

RESUMEN

Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.


Asunto(s)
Dependovirus/genética , Genoma Humano/genética , Interferencia de ARN , Transducción Genética , Animales , Línea Celular , Línea Celular Tumoral , Expresión Génica , Terapia Genética/métodos , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Hígado/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes/genética
16.
Circ Res ; 114(11): 1827-46, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24855205

RESUMEN

The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.


Asunto(s)
Adenoviridae/genética , Enfermedades Cardiovasculares/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , Animales , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/fisiopatología , ADN Complementario/genética , Modelos Animales de Enfermedad , Humanos , Ratones , MicroARNs/genética , ARN Interferente Pequeño/genética
17.
Circ Res ; 115(7): 636-49, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25114098

RESUMEN

RATIONALE: The Notch pathway plays a key role in stimulating mammalian cardiomyocyte proliferation during development and in the early postnatal life; in adult zebrafish, reactivation of this pathway is also essential to drive cardiac regeneration after injury. OBJECTIVE: We wanted to assess efficacy of Notch pathway stimulation in neonatal and adult hearts as a means to induce cardiac regeneration after myocardial infarction in mice. METHODS AND RESULTS: In early postnatal life, cardiomyocyte exit from the cell cycle was paralleled by decreased Notch signaling and the establishment of a repressive chromatin environment at Notch-responsive genes, characterized by recruitment of the polycomb group enhancer of zeste homolog 2 methyltransferase and the acquisition of the histone 3 Lysine 27 trimethylation histone mark, as detected by chromatin immunoprecipitation. Forced Notch pathway activation by adenoassociated virus gene transfer of activated Notch1 or its ligand Jagged1 expanded the proliferative capacity of neonatal cardiomyocytes; this correlated with increased transcription of Notch target genes and maintenance of an open chromatin conformation at their promoters. The same adenoassociated virus vectors, however, were largely ineffective in stimulating cardiac repair after myocardial infarction in adult mice, despite optimal and long-lasting transgene expression. Analysis of Notch-responsive promoters in adult cardiomyocytes showed marks of repressed chromatin and irreversible CpG DNA methylation. Induction of adult cardiomyocyte re-entry into the cell cycle with microRNAs was independent from Notch pathway reactivation. CONCLUSIONS: Notch pathway activation is crucial in regulating cardiomyocyte proliferation during the early postnatal life, but it is largely ineffective in driving cardiac regeneration in adults, because of permanent epigenetic modification at Notch-responsive promoters.


Asunto(s)
Epigénesis Genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Receptor Notch1/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Histonas/genética , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/fisiología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Ratas , Ratas Wistar , Receptor Notch1/genética , Regeneración , Proteínas Serrate-Jagged , Transcripción Genética , Proteínas de Pez Cebra
18.
Mol Ther ; 23(5): 885-895, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25669433

RESUMEN

Although in the last decades the molecular underpinnings of the cell cycle have been unraveled, the acquired knowledge has been rarely translated into practical applications. Here, we investigate the feasibility and safety of triggering proliferation in vivo by temporary suppression of the cyclin-dependent kinase inhibitor, p21. Adeno-associated virus (AAV)-mediated, acute knockdown of p21 in intact skeletal muscles elicited proliferation of multiple, otherwise quiescent cell types, notably including satellite cells. Compared with controls, p21-suppressed muscles exhibited a striking two- to threefold expansion in cellularity and increased fiber numbers by 10 days post-transduction, with no detectable inflammation. These changes partially persisted for at least 60 days, indicating that the muscles had undergone lasting modifications. Furthermore, morphological hyperplasia was accompanied by 20% increases in maximum strength and resistance to fatigue. To assess the safety of transiently suppressing p21, cells subjected to p21 knockdown in vitro were analyzed for γ-H2AX accumulation, DNA fragmentation, cytogenetic abnormalities, ploidy, and mutations. Moreover, the differentiation competence of p21-suppressed myoblasts was investigated. These assays confirmed that transient suppression of p21 causes no genetic damage and does not impair differentiation. Our results establish the basis for further exploring the manipulation of the cell cycle as a strategy in regenerative medicine.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Aberraciones Cromosómicas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dependovirus/clasificación , Dependovirus/genética , Fibroblastos , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Ratones , Contracción Muscular/genética , Mutación , Interferencia de ARN , ARN Interferente Pequeño/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serogrupo , Transducción Genética
19.
Hepatology ; 59(6): 2331-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24452456

RESUMEN

UNLABELLED: Aberrant DNA replication induced by deregulated or excessive proliferative stimuli evokes a "replicative stress response" leading to cell cycle restriction and/or apoptosis. This robust fail-safe mechanism is eventually bypassed by transformed cells, due to ill-defined epistatic interactions. The COP9 signalosome (CSN) is an evolutionarily conserved regulator of cullin ring ligases (CRLs), the largest family of ubiquitin ligases in metazoans. Conditional inactivation of the CSN in several tissues leads to activation of S- or G2-phase checkpoints resulting in irreversible cell cycle arrest and cell death. Herein we ablated COPS5, the CSNs catalytic subunit, in the liver, to investigate its role in cell cycle reentry by differentiated hepatocytes. Lack of COPS5 in regenerating livers causes substantial replicative stress, which triggers a CDKN2A-dependent genetic program leading to cell cycle arrest, polyploidy, and apoptosis. These outcomes are phenocopied by acute overexpression of c-Myc in COPS5 null hepatocytes of adult mice. CONCLUSION: We propose that combined control of proto-oncogene product levels and proteins involved in DNA replication origin licensing may explain the deleterious consequences of CSN inactivation in regenerating livers and provide insight into the pathogenic role of the frequently observed overexpression of the CSN in hepatocellular carcinoma.


Asunto(s)
Hepatocitos/fisiología , Regeneración Hepática , Complejos Multiproteicos/fisiología , Péptido Hidrolasas/fisiología , Animales , Complejo del Señalosoma COP9 , Replicación del ADN , Femenino , Genes myc , Genes p16 , Homeostasis , Hígado/fisiología , Hígado/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Poliploidía
20.
Circulation ; 127(21): 2097-106, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23625957

RESUMEN

BACKGROUND: Several microRNAs (miRs) have been shown to regulate gene expression in the heart, and dysregulation of their expression has been linked to cardiac disease. miR-378 is strongly expressed in the mammalian heart but so far has been studied predominantly in cancer, in which it regulates cell survival and tumor growth. METHODS AND RESULTS: Here, we report tight control of cardiomyocyte hypertrophy through miR-378. In isolated primary cardiomyocytes, miR-378 was found to be both necessary and sufficient to repress cardiomyocyte hypertrophy. Bioinformatic prediction suggested that factors of the mitogen-activated protein kinase (MAPK) pathway are enriched among miR-378 targets. Using mRNA and protein expression analysis along with luciferase assays, we validated 4 key components of the MAPK pathway as targets of miR-378: MAPK1 itself, insulin-like growth factor receptor 1, growth factor receptor-bound protein 2, and kinase suppressor of ras 1. RNA interference with these targets prevented the prohypertrophic effect of antimiR-378, suggesting their functional relation with miR-378. Because miR-378 significantly decreases in cardiac disease, we sought to compensate for its loss through adeno-associated virus-mediated, cardiomyocyte-targeted expression of miR-378 in an in vivo model of cardiac hypertrophy (pressure overload by thoracic aortic constriction). Restoration of miR-378 levels significantly attenuated thoracic aortic constriction-induced cardiac hypertrophy and improved cardiac function. CONCLUSIONS: Our data identify miR-378 as a regulator of cardiomyocyte hypertrophy, which exerts its activity by suppressing the MAPK signaling pathway on several distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted adeno-associated virus-miR-378 may prove to be an effective therapeutic strategy in myocardial disease.


Asunto(s)
Cardiomegalia/patología , Cardiomegalia/fisiopatología , MicroARNs/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Transducción de Señal/fisiología , Adenoviridae/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Proteína Adaptadora GRB2/antagonistas & inhibidores , Proteína Adaptadora GRB2/fisiología , MicroARNs/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Quinasas/fisiología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de Somatomedina/antagonistas & inhibidores , Receptores de Somatomedina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA