Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 179: 106236, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483516

RESUMEN

Atherosclerosis is a chronic inflammatory disease and the pathological basis of many fatal cardiovascular diseases. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a paradox role in disease progression. In response to different microenvironments, macrophages mainly have two polarized directions: pro-inflammatory macrophages and anti-inflammatory macrophages. More and more evidence shows that macrophage is mechanosensitive and matrix stiffness regulate macrophage phenotypes in atherosclerosis. However, the molecular mechanism of matrix stiffness regulating macrophage polarization still lacks in-depth research, which hinders the development of new anti-atherosclerotic therapies. In this review, we discuss the important role of matrix stiffness in regulating macrophage polarization through mechanical signal transduction (Hippo, Piezo, cytoskeleton, and integrin) and epigenetic mechanisms (miRNA, DNA methylation, and histone). We hope to provide a new perspective for atherosclerosis therapy by targeting matrix stiffness and macrophage polarization.


Asunto(s)
Aterosclerosis , MicroARNs , Placa Aterosclerótica , Aterosclerosis/patología , Humanos , Activación de Macrófagos , Macrófagos
2.
Artículo en Zh | MEDLINE | ID: mdl-26653807

RESUMEN

OBJECTIVE: To provide data for the occupational health supervision by analyzing the occupational health status in manufacturing industry in Guangzhou, China. METHODS: The occupational health investigation was performed in 280 enterprises randomly selected from 8 industries based on industry stratification. According to the occupational health standards, 198 out of the 280 enterprises were supervised and monitored. Sample testing was performed in 3~5 workplaces where workers were exposed to the highest concentration/intensity of occupational hazard for the longest time. Comparative analyses of the overproof rates of hazard were performed among enterprises, workplaces, and testing items from different industries. RESULTS: The concentrations of occupational hazard in 42.93% (85/198) of enterprises and 22.96% (200/871) of workplaces were above the limit concentration. The most severe hazards were the noises in shipbuilding and wooden furniture industries and the welding fumes in shipbuilding industry. Less than 30% of enterprises were able to provide occupational health examination and periodic test reports of occupational hazard in workplaces. The rate of the workers with abnormal occupational health examination results and the need for reexamination reached 6.63% (832/12 549), and they were mostly from shipbuilding, wooden furniture, and chemical industries. CONCLUSION: The occupational health supervision should be strengthened in enterprises, and hazard from noises and dusts should be selectively controlled or reduced. The publication of relevant data and information of occupational health in enterprises should be promoted to enhance social supervision.


Asunto(s)
Industria Manufacturera/estadística & datos numéricos , Exposición Profesional/estadística & datos numéricos , Salud Laboral/estadística & datos numéricos , Industria Química , China , Polvo , Humanos , Diseño Interior y Mobiliario , Ruido en el Ambiente de Trabajo , Soldadura , Lugar de Trabajo
3.
Sci Total Environ ; 849: 157928, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35952883

RESUMEN

Freshwater is an essential resource for human lives, agriculture, industry, and ecology. Future water supply, water withdrawal, and water security under the impacts of climate change and human interventions have been of key concern. Numerous studies have projected future changes in river runoff and surface water resources under climate change. However, the changes in the major water withdrawal components including agricultural irrigation water, industrial, domestic and ecological water withdrawal, as well as the balance between water supply and withdrawal, under the joint impacts of climate change and socio-economic development have been seldom investigated, especially at the basin and national scales. In this study, changes in surface water resources, agricultural irrigation water, industrial, domestic and ecological water withdrawal, as well as the balances between water supply and withdrawal, under the baseline climate (2006-2015), 1.5 °C and 2.0 °C warming scenarios (2106-2115) in the 10 major basins across China, were investigated by combining modelling and local census data. The results showed that water withdrawal exceeded water supply in the basins of Liao River, Northwest River, Hai River, Yellow River and Huai River in the baseline period. Under the 1.5 °C and 2.0 °C warming scenarios, the shortage of water resources would aggravate in the above-mentioned basins and the Songhua River basin. And the surplus of water resources would reduce substantially in the basins of Yangtze River, Southeast River and Pearl River. Overall, the difference between water supply and water withdrawal was 435.88 billion m3 during the baseline period, and would be 261.84 and 218.39 billion m3, respectively, under the 1.5 °C and 2.0 °C warming scenarios. This study provides a comprehensive perspective on future water security in the 10 major basins across China, has important implications for water resources management and climate change adaptation.


Asunto(s)
Calentamiento Global , Agua , Cambio Climático , Humanos , Ríos , Abastecimiento de Agua
4.
Sci Total Environ ; 605-606: 219-229, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28667849

RESUMEN

Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%, -66%, -50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%, -68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%, -67%, -94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed.


Asunto(s)
Cambio Climático , Movimientos del Agua , China , Actividades Humanas , Humanos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA