Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; : e2308599, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054626

RESUMEN

The occurrence of osteoarthritis (OA) is highly associated with the inflammatory hypoxic microenvironment. Yet currently no attention has been paid to fabricating hypoxia-responsive platforms for OA treatment. Herein, an injectable hydrogel microsphere system (HAM-SA@HCQ) focusing on the hypoxic inflamed joint is prepared with methacrylate-modified sulfonated azocalix[4]arene (SAC4A-MA), methacrylated hyaluronic acid (HA-MA), and dithiol-terminated matrix metalloproteinase 13 (MMP-13) sensitive peptide via a microfluidic device and photo crosslinking technique, followed by encapsulation of the anti-inflammatory drug hydroxychloroquine (HCQ) through host-guest interaction. Owing to the hydrophobic deep cavity, phenolic units, and azo bonds of SAC4A-MA, the hydrogel microspheres show strong drug loading capacity, prominent reactive oxygen species (ROS) scavenging capability, and specific hypoxia-responsive drug release ability. In the OA tissue microenvironment, the hydrogel microspheres undergo degradation by excessive MMP-13 and release HCQ under the hypoxia condition, which synergizes with the ROS-scavenging calixarene to inhibit the inflammatory response of macrophages. After being injected into the OA-inflamed joint, the HAM-SA@HCQ can significantly attenuate the oxidative stress, downregulate the expression of hypoxia-induced factor-1α and inflammatory cytokines, and prevent the cartilage from being destroyed.

2.
Small ; 17(17): e2006992, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33719217

RESUMEN

Cellular metabolism plays a major role in the regulation of inflammation. The inflammatory macrophages undergo a wide-range of metabolic rewriting due to the production of significant amount of itaconate metabolite from cis-aconitate in the tricarboxylic acid cycle. This itaconate molecule has been recently described as a promising immunoregulator. However, its function and mode of action on macrophages and tissue repair and regeneration are yet unclear. Herein, the itaconate-derivative dimethyl itaconate (DMI) suppresses the IL-23/IL-17 inflammatory axis-associated genes and promotes antioxidant nuclear factor erythroid 2-related factor 2 target genes. The poly-ε-caprolactone (PCL)/DMI nanofibers implanted in mice initially maintain inflammation by suppressing anti-inflammatory activity and particular inflammation, while at later stage promotes anti-inflammatory activity for an appropriate tissue repair. Furthermore, the PCL/DMI nanofiber patches show an excellent myocardial protection by reducing infarct area and improving ventricular function via time-dependent regulation of myocardium-associated genes. This study unveils potential DMI macrophage modulatory functions in tissue microenvironment and macrophages rewriting for proper tissue repair.


Asunto(s)
Nanofibras , Animales , Infarto , Inflamación , Macrófagos , Ratones , Succinatos
3.
Nanoscale ; 16(25): 12149-12162, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38833269

RESUMEN

Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 µm diameter), charge (-15 mV), and loading efficiencies of OVA (238 µg mg-1 particles) and aPD1 (40 µg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Ratones , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Ovalbúmina/química , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Nanopartículas/química , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/química , Células T de Memoria/inmunología , Vacunación , Humanos , Células RAW 264.7 , Memoria Inmunológica
4.
Biomaterials ; 307: 122534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518589

RESUMEN

Despite of the recent advances in regulatory T cell (Treg) therapy, a limited number of available cells and specificity at the desired tissue site have severely compromised their efficacy. Herein, an injectable drug-releasing (MTK-TK-drug) microgel system in response to in situ stimulation by reactive oxygen species (ROS) was constructed with a coaxial capillary microfluidic system and UV curing. The spherical microgels with a size of 150 µm were obtained. The MTK-TK-drug microgels efficiently converted the pro-inflammatory Th17 cells into anti-inflammatory regulatory T cells (Treg) cells in vitro, and the ROS-scavenging materials synergistically enhanced the effect by modulating the inflammation microenvironment. Thus, the microgels significantly reduced cardiomyocyte apoptosis and decreased the inflammatory response in the early stages of post-myocardial infarction (MI) in vivo, thereby reducing fibrosis, promoting vascularization, and preserving cardiac function. Overall, our results indicate that the MTK-TK-drug microgels can attenuate the inflammatory response and improve MI therapeutic effects in vivo.


Asunto(s)
Microgeles , Infarto del Miocardio , Humanos , Especies Reactivas de Oxígeno , Infarto del Miocardio/tratamiento farmacológico , Linfocitos T Reguladores , Microfluídica
5.
Mater Horiz ; 10(9): 3438-3449, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37424353

RESUMEN

Advanced elastomers are highly in demand for the fabrication of medical devices for minimally invasive surgery (MIS). Herein, a shape memory and self-healing polyurethane (PCLUSe) composed of semi-crystalline poly(ε-caprolactone) (PCL) segments and interchangeable and antioxidative diselenide bonds was designed and synthesized. The excellent shape memory of PCLUSe contributed to the smooth MIS operation, leading to less surgical wounds than in the case of sternotomy. The diselenide bonds of PCLUSe contributed to the rapid self-healing under 405 nm irradiation within 60 s, and the alleviation of tissue oxidation post injury. After being delivered through a 10 mm diameter trocar onto a beating canine heart by MIS, two shape-recovered PCLUSe films self-assembled (self-healing) into a larger single patch (20 × 10 × 0.2 mm3) under the trigger of laser irradiation in situ, which could efficiently overcome the limited-size problem within MIS and meet a larger treatment area. The diselenide bonds in the PCLUSe cardiac patches protected the myocardium under oxidative stress post myocardial infarction (MI), and significantly maintained the cardiac functions.


Asunto(s)
Infarto del Miocardio , Poliuretanos , Animales , Perros , Poliuretanos/química , Elastómeros , Miocardio
6.
Artículo en Inglés | MEDLINE | ID: mdl-34713969

RESUMEN

Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.


Asunto(s)
Lesión Pulmonar Aguda , Nanopartículas , Neumonía , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Humanos , Inflamación/tratamiento farmacológico , Pulmón , Nanopartículas/uso terapéutico , Neumonía/tratamiento farmacológico , Neumonía/patología
7.
Bioact Mater ; 14: 430-442, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35415281

RESUMEN

Acute lung injury (ALI) is associated with excessive inflammatory response, leading to acute respiratory distress syndrome (ARDS) without timely treatment. A fewer effective drugs are available currently to treat the ALI/ARDS. Herein, a therapeutic nanoplatform with reactive oxygen species (ROS)-responsiveness was developed for the regulation of inflammation. Dexamethasone acetate (Dex) was encapsulated into poly(thioketal) polymers to form polymeric nanoparticles (NPs) (PTKNPs@Dex). The NPs were composed of poly(1,4-phenyleneacetonedimethylene thioketal) (PPADT) and polythioketal urethane (PTKU), in which the thioketal bonds could be cleaved by the high level of ROS at the ALI site. The PTKNPs@Dex could accumulate in the pulmonary inflammatory sites and release the encapsulated payloads rapidly, leading to the decreased ROS level, less generation of pro-inflammatory cytokines, and reduced lung injury and mortality of mice. RNA sequencing (RNA-seq) analysis showed that the therapeutic efficacy of the NPs was associated with the modulation of many immune and inflammation-linked pathways. These findings provide a newly developed nanoplatform for the efficient treatment of ALI/ARDS.

8.
Acta Biomater ; 148: 258-270, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35724918

RESUMEN

The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared dexamethasone-loaded ROS-responsive polymer nanoparticles (PFTU@DEX NPs) by a modified emulsion approach, which achieved high loading content of DEX (11.61 %). DEX was released faster from the PFTU@DEX NPs in a ROS environment, which could scavenge excessive ROS efficiently both in vitro and in vivo. The PFTU NPs and PFTU@DEX NPs showed no hemolysis and cytotoxicity. Free DEX, PFTU NPs and PFTU@DEX NPs shifted M1 macrophages to M2 macrophages in RAW264.7 cells, and showed anti-inflammatory modulation to A549 cells in vitro. The PFTU@DEX NPs treatment significantly reduced the increased total protein concentration in BALF of ALI mice. The delivery of PFTU@DEX NPs decreased the proportion of neutrophils significantly, mitigated the cell apoptosis remarkably compared to the other groups, reduced M1 macrophages and increased M2 macrophages in vivo. Moreover, the PFTU@DEX NPs had the strongest ability to suppress the expression of NLRP3, Caspase1, and IL-1ß. Therefore, the PFTU@DEX NPs could efficiently suppress inflammatory cells, ROS signaling pathways, and cell apoptosis to ameliorate LPS-induced ALI. STATEMENT OF SIGNIFICANCE: The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients. There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to modulate the inflammatory disorder and suppress the expression of ROS and inflammatory cytokines. The inhaled PFTU@DEX NPs prepared through a modified nanoemulsification method suppressed the activation of NLRP3, induced the polarization of macrophage phenotype from M1 to M2, and thereby reduced the neutrophil infiltration, inhibited the release of proteins and inflammatory mediators, and thus decreased the acute lung injury in vivo.


Asunto(s)
Lesión Pulmonar Aguda , Tratamiento Farmacológico de COVID-19 , Nanopartículas , Neumonía , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Síndrome de Liberación de Citoquinas , Dexametasona/farmacología , Dexametasona/uso terapéutico , Lipopolisacáridos/uso terapéutico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Polímeros/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
9.
Research (Wash D C) ; 2021: 4189516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33623917

RESUMEN

Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.

10.
Nanoscale ; 13(1): 138-149, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33350429

RESUMEN

Controlling the assembly of synthetic molecules in living systems is of significance for their adaptive applications. However, it is difficult to achieve, especially for composite self-assemblies, due to the complexity and dynamic change of the intracellular environment, and there exist technical difficulties for the direct visualization of organic and polymer self-assemblies. Herein, we demonstrate a novel strategy for the in situ formation of self-assembled micro-nano composite structures in a cell milieu using reduction-responsive microgels (MGs) as a platform. The MGs were prepared by a templating and crosslinking method using a synthetic amphiphlic polymer as the basic material and porous CaCO3 microparticles as the template. The aggregation-induced emission (AIE) tetraphenylethylene moieties and reduction-labile disulfide bonds in the MGs were employed as the self-assembly building blocks and triggering sites for the intracellular self-assembly, respectively. In the presence of reductive agents such as glutathione, nano-spikes were gradually formed on the MGs. After the MGs were internalized by cells, the in situ formation of microgel/nano-spike composite structures was evidenced by the enhanced fluorescence intensity and was further confirmed by direct transmission electron microscopy observation. This work provides an effective strategy to cope with the challenging task of achieving and probing controlled self-assembly in a cell milieu, leading to new insights into investigating biological self-assembly and promoting the development of micro-/nanomaterials by learning from nature.


Asunto(s)
Microgeles , Nanoestructuras , Estilbenos , Polímeros
11.
Macromol Biosci ; 20(10): e2000196, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32783352

RESUMEN

One of the challenges facing by world nowadays is the generation of new pathogens that cause public health issues. Coronavirus (CoV) is one of the severe pathogens that possess the RNA (ribonucleic acid) envelop, and extensively infect humans, birds, and other mammals. The novel strain "SARS-CoV-2" (severe acute respiratory syndrome coronavirus-2) causes deadly infection all over the world and presents a pandemic situation nowadays. The SARS-CoV-2 has 40 different strains that create a worrying situation for health authorities. The virus develops serious pneumonia in infected persons and causes severe damage to the lungs. There is no vaccine available for this virus up to present. To cure this type of infections by making vaccines and antiviral drugs is still a major challenge for researchers. Nanotechnology covering a multidisciplinary field may find the solution to this lethal infection. The interaction of nanomaterials and microorganisms is considered as a potential treatment method because the nanomaterials owe unique physicochemical properties. The aim of this review is to present an overview of previous and recent studies of nanomaterials against coronaviruses and to provide possible new strategies for upcoming research using the nanotechnology platform.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Nanoestructuras/uso terapéutico , Antivirales/química , Técnicas Biosensibles , Prueba de COVID-19/métodos , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/farmacología , Oro/química , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Puntos Cuánticos , Plata/química
12.
Colloids Surf B Biointerfaces ; 192: 111075, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32403015

RESUMEN

The importance of inflammatory tissue microenvironment on the repair and regeneration of tissues and organs has been well recognized. In particular, the phenotypes of macrophages can significantly influence on the processes of tissue repair and remodeling. Among the many types of biomaterials, the particles in the range from nanometers to submicron meters have been extensively studied and applied in tissue engineering and regenerative medicine. They can actively interact with cells in different levels, and show the ability to regulate the polarization of macrophages. In this review, the influence of physicochemical properties such as size, surface charge, chemical components and surface modification of micro-nanoparticles on the immune behavior of macrophages, including endocytosis and phenotype switch, shall be introduced. The important roles of nanoparticles-based immunoregulation of macrophages on the chronic skin wounds regeneration, myocardial repair, liver repair and bone regeneration are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA