Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 913-927.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686581

RESUMEN

Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.


Asunto(s)
Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Potenciales de Acción , Diferenciación Celular , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Miocardio/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos
2.
Nature ; 596(7870): 126-132, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34290408

RESUMEN

PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Asunto(s)
Antígenos de Neoplasias/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Regulación de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Antígenos de Neoplasias/genética , Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Células Cultivadas , Humanos , Memoria Inmunológica , Neoplasias Pulmonares/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Receptores de Interleucina-7/inmunología , Análisis de la Célula Individual , Transcriptoma/genética , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968108

RESUMEN

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Asunto(s)
Angiotensina II , COVID-19 , Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , SARS-CoV-2 , Humanos , Angiotensina II/farmacología , COVID-19/virología , COVID-19/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Apoptosis/efectos de los fármacos , Dispositivos Laboratorio en un Chip , MicroARNs/metabolismo , MicroARNs/genética , Citocinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(19): e2212613120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126714

RESUMEN

Oxidative stress is a key feature in both chronic inflammation and cancer. P38 regulated/activated protein kinase (PRAK) deficiency can cause functional disorders in neutrophils and macrophages under high oxidative stress, but the precise mechanisms by which PRAK regulates reactive oxygen species (ROS) elimination and its potential impact on CD4+ T helper subset function are unclear. The present study reveals that the PRAK-NF-E2-related factor 2(NRF2) axis is essential for maintaining the intracellular redox homeostasis of T helper 17(Th17) cells, thereby promoting Th17 cell differentiation and antitumor effects. Through mechanistic analysis, we identify NRF2 as a novel protein substrate of PRAK and find that PRAK enhances the stability of the NRF2 protein through phosphorylation NRF2 Serine(S) 558 independent of protein ubiquitination. High accumulation of cellular ROS caused by loss of PRAK disrupts both glycolysis and PKM2-dependent phosphorylation of STAT3, which subsequently impairs the differentiation of Th17 cells. As a result, Prak knockout (KO) mice display significant resistance to experimental autoimmune encephalomyelitis (EAE) but impaired antitumor immunity in a MC38 tumor model. This work reveals that the PRAK-NRF2-mediated antioxidant pathway is a metabolic checkpoint that controls Th17-cell glycolysis and differentiation. Targeting PRAK is a promising strategy for maintaining an active ROS scavenging system and may lead to potent Th17 cell antitumor immunity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Proteínas Quinasas , Animales , Ratones , Diferenciación Celular , Glucólisis , Homeostasis , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Th17/metabolismo
5.
Plant Cell ; 34(11): 4554-4568, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35972347

RESUMEN

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Reprogramación Celular , Regulación de la Expresión Génica de las Plantas , Gossypium , Organogénesis de las Plantas , Proteínas de Plantas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolismo de los Lípidos/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos de Facilitación Genéticos , Multimerización de Proteína , Reprogramación Celular/genética , Organogénesis de las Plantas/genética
6.
BMC Biol ; 22(1): 114, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764013

RESUMEN

BACKGROUND: Cotton is a major world cash crop and an important source of natural fiber, oil, and protein. Drought stress is becoming a restrictive factor affecting cotton production. To facilitate the development of drought-tolerant cotton varieties, it is necessary to study the molecular mechanism of drought stress response by exploring key drought-resistant genes and related regulatory factors. RESULTS: In this study, two cotton varieties, ZY007 (drought-sensitive) and ZY168 (drought-tolerant), showing obvious phenotypic differences under drought stress, were selected. A total of 25,898 drought-induced genes were identified, exhibiting significant enrichment in pathways related to plant stress responses. Under drought induction, At subgenome expression bias was observed at the whole-genome level, which may be due to stronger inhibition of Dt subgenome expression. A gene co-expression module that was significantly associated with drought resistance was identified. About 90% of topologically associating domain (TAD) boundaries were stable, and 6613 TAD variation events were identified between the two varieties under drought. We identified 92 genes in ZY007 and 98 in ZY168 related to chromatin 3D structural variation and induced by drought stress. These genes are closely linked to the cotton response to drought stress through canonical hormone-responsive pathways, modulation of kinase and phosphatase activities, facilitation of calcium ion transport, and other related molecular mechanisms. CONCLUSIONS: These results lay a foundation for elucidating the molecular mechanism of the cotton drought response and provide important regulatory locus and gene resources for the future molecular breeding of drought-resistant cotton varieties.


Asunto(s)
Cromatina , Sequías , Regulación de la Expresión Génica de las Plantas , Gossypium , Gossypium/genética , Gossypium/fisiología , Cromatina/metabolismo , Estrés Fisiológico/genética , Genes de Plantas
7.
J Am Chem Soc ; 146(6): 4068-4077, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38289263

RESUMEN

The synthesis of photocatalysts with both broad light absorption and efficient charge separation is significant for a high solar energy conversion, which still remains to be a challenge. Herein, a narrow-bandgap Y2Ti2O5S2 (YTOS) oxysulfide nanosheet coexposed with defined {101} and {001} facets synthesized by a flux-assisted solid-state reaction was revealed to display the character of an anisotropic charge migration. The selective photodeposition of cocatalysts demonstrated that the {101} and {001} surfaces of YTOS nanosheets were the reduction and oxidation regions during photocatalysis, respectively. Density functional theory (DFT) calculations indicated a band energy level difference between the {101} and {001} facets of YTOS, which contributes to the anisotropic charge migration between them. The exposed Ti atoms on the {101} surface and S atoms on the {001} surface were identified, respectively, as reducing and oxidizing centers of YTOS nanosheets. This anisotropic charge migration generated a built-in electric field between these two facets, quantified by spatially resolved surface photovoltage microscopy, the intensity of which was found to be highly correlated with photocatalytic H2 production activity of YTOS, especially exhibiting a high apparent quantum yield of 18.2% (420 nm) after on-site modification of a Pt@Au cocatalyst assisted by Na2S-Na2SO3 hole scavengers. In conjunction with an oxygen-production photocatalyst and a [Co(bpy)3]2+/3+ redox shuttle, the YTOS nanosheets achieved a solar-to-hydrogen conversion efficiency of 0.15% via a Z-scheme overall water splitting. Our work is the first to confirm anisotropic charge migration in a perovskite oxysulfide photocatalyst, which is crucial for enhancing charge separation and surface catalytic efficiency in this material.

8.
Biochem Genet ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896379

RESUMEN

Diabetic cataract (DC) is a major cause of blindness in diabetic patients and it is characterized by early onset and rapid progression. MiR-204-5p was previously identified as one of the top five down-regulated miRNAs in human DC lens tissues. We aimed to determine the expression of miR-204-5p in human lens epithelial cells (HLECs) and explore its effects and mechanisms in regulating the progression of DC. The expression of miR-204-5p in the anterior capsules of DC patients and HLECs was examined by RT-qPCR. Bioinformatics tools were then used to identify the potential target of miR-204-5p. The relationship between miR-204-5p and the target gene was confirmed through a dual luciferase reporter assay. Additionally, the regulatory mechanism of oxidative stress, apoptosis, and inflammation in DC was investigated by overexpressing miR-204-5p using miR-204-5p agomir. The expression of miR-204-5p was downregulated in the anterior capsules of DC patients and HLECs. Overexpression of miR-204-5p reduced ROS levels, pro-apoptosis genes (Bid, Bax, caspase-3), and IL-1ß production in HG-treated HLECs. TXNIP was the direct target of miR-204-5p by dual luciferase reporter assay. Therefore, this study demonstrated that miR-204-5p effectively reduced oxidative damage, apoptosis, and inflammation in HLECs under HG conditions by targeting TXNIP. Targeting miR-204-5p could be a promising therapeutic strategy for the potential treatment of DC.

9.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396797

RESUMEN

Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Bovinos , Animales , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Células Madre Embrionarias
10.
Angew Chem Int Ed Engl ; 63(24): e202403980, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38588065

RESUMEN

Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3 - and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmol ⋅ g-1 ⋅ h-1 and a Faradaic efficiency of 48.88 % at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15 %, the Faradaic efficiency of urea synthesis remains robust at 42.33 %. The tandem reduction procedure was further confirmed by in situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.

11.
Small ; 19(25): e2207752, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36929582

RESUMEN

Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.


Asunto(s)
Matriz Extracelular Descelularizada , Matriz Extracelular , Ingeniería de Tejidos/métodos , Organoides , Bioingeniería , Andamios del Tejido
12.
Plant Biotechnol J ; 21(6): 1270-1285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36949572

RESUMEN

N6 -methyladenosine (m6 A) is the most prevalent internal modification present in mRNAs, and is considered to participate in a range of developmental and biological processes. Drought response is highly regulated at the genomic, transcriptional and post-transcriptional levels. However, the biological function and regulatory mechanism of m6 A modification in the drought stress response is still poorly understood. We generated a transcriptome-wide m6 A map using drought-resistant and drought-sensitive varieties of cotton under different water deficient conditions to uncover patterns of m6 A methylation in cotton response to drought stress. The results reveal that m6 A represents a common modification and exhibit dramatic changes in distribution during drought stress. More 5'UTR m6 A was deposited in the drought-resistant variety and was associated with a positive effect on drought resistance by regulating mRNA abundance. Interestingly, we observed that increased m6 A abundance was associated with increased mRNA abundance under drought, contributing to drought resistance, and vice versa. The demethylase GhALKBH10B was found to decrease m6 A levels, facilitating the mRNA decay of ABA signal-related genes (GhZEP, GhNCED4 and GhPP2CA) and Ca2+ signal-related genes (GhECA1, GhCNGC4, GhANN1 and GhCML13), and mutation of GhALKBH10B enhanced drought resistance at seedling stage in cotton. Virus-induced gene silencing (VIGS) of two Ca2+ -related genes, GhECA1 and GhCNGC4, reduced drought resistance with the decreased m6 A enrichment on silenced genes in cotton. Collectively, we reveal a novel mechanism of post-transcriptional modification involved in affecting drought response in cotton, by mediating m6 A methylation on targeted transcripts in the ABA and Ca2+ signalling transduction pathways.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética , ARN Mensajero/genética , Gossypium/genética , Gossypium/metabolismo
13.
J Transl Med ; 21(1): 156, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855062

RESUMEN

BACKGROUND: Although the relationship between type 2 diabetes (T2D) and the increased risk of colorectal carcinogenesis is widely defined in clinical studies, the therapeutic methods and molecular mechanism of T2D-induced colon cancer and how does hyperglycemia affect the progression is still unknown. Here, we studied the function of lactoferrin (LF) in suppressing the progression of colon cancer in T2D mice, and uncovered the related molecular mechanisms in DNA 5mC and RNA m6A levels. METHODS: We examined the effects of LF (50% iron saturation) on the migration and invasion of colon tumor cells under high concentration of glucose. Then, transcriptomics and DNA methylation profilings of colon tumor cells was co-analyzed to screen out the special gene (NT5DC3), and the expression level of NT5DC3 in 75 clinical blood samples was detected by q-PCR and western blot, to investigate whether NT5DC3 was a biomarker to distinguish T2D patients and T2D-induced colon cancer patients from healthy volunteers. Futhermore, in T2D mouse with xenografted colon tumor models, the inhibitory effects of LF and NT5DC3 protein on colon tumors were investigated. In addition, epigenetic alterations were measured to examine the 5mC/m6A modification sites of NT5DC3 regulated by LF. Utilizing siRNA fragments of eight m6A-related genes, the special gene (WTAP) regulating m6A of NT5DC was proved, and the effect of LF on WTAP/NT5DC3/HKDC1 axis was finally evaluated. RESULTS: A special gene NT5DC3 was screened out through co-analysis of transcriptomics and DNA methylation profiling, and HKDC1 might be a downstream sensor of NT5DC3. Mechanistically, LF-dependent cellular DNA 5mC and RNA m6A profiling remodeling transcriptionally regulate NT5DC3 expression. WTAP plays a key role in regulating NT5DC3 m6A modification and subsequently controls NT5DC3 downstream target HKDC1 expression. Moreover, co-treatment of lactoferrin and NT5DC3 protein restrains the growth of colon tumors by altering the aberrant epigenetic markers. Strikingly, clinical blood samples analysis demonstrates NT5DC3 protein expression is required to direct the distinction of T2D or T2D-induced colon cancer with healthy humans. CONCLUSIONS: Together, this study reveals that lactoferrin acts as a major factor to repress the progression of colon cancer under hyperglycemia, thus, significantly expanding the landscape of natural dietary mediated tumor suppression.


Asunto(s)
Neoplasias del Colon , Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Animales , Ratones , Lactoferrina/genética , Neoplasias del Colon/genética , Hiperglucemia/complicaciones , Hiperglucemia/genética , Modelos Animales de Enfermedad , Factores de Empalme de ARN , Proteínas de Ciclo Celular , Hexoquinasa
14.
J Nanobiotechnology ; 21(1): 182, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280622

RESUMEN

Due to its complicated pathophysiology, propensity for metastasis, and poor prognosis, colon cancer is challenging to treat and must be managed with a combination of therapy. Using rolling circle transcription (RCT), this work created a nanosponge therapeutic medication system (AS1411@antimiR-21@Dox). Using the AS1411 aptamer, this approach accomplished targeted delivery to cancer cells. Furthermore, analysis of cell viability, cell apoptosis, cell cycle arrest, reactive oxygen species (ROS) content, and mitochondrial membrane potential (MMP) levels revealed that functional nucleic acid nanosponge drug (FND) can kill cancer cells. Moreover, transcriptomics uncovered a putative mechanism for the FND anti-tumor effect. These pathways, which included mitotic metaphase and anaphase as well as the SMAC-mediated dissociation of the IAP: caspase complexes, were principally linked to the cell cycle and cell death. In conclusion, by triggering cell cycle arrest and apoptosis, the nano-synergistic therapeutic system allowed for the intelligent and effective targeted administration of RNA and chemotherapeutic medicines for colon cancer treatment. The system allowed for payload efficiency while being customizable, targeted, reliable, stable, and affordable.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias del Colon , Nanopartículas , Ácidos Nucleicos , Humanos , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Ácidos Nucleicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Portadores de Fármacos/uso terapéutico , Aptámeros de Nucleótidos/uso terapéutico , Oligodesoxirribonucleótidos , Nanopartículas/uso terapéutico , Línea Celular Tumoral
15.
Plant Dis ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115567

RESUMEN

The genus Taxus is the natural material of the anticancer drug paclitaxel (Xiong et al. 2021). Harvesting sources of paclitaxel from the wild has greatly decreased the population of these trees. One of the taxus species, Taxus × media Rehder, a natural hybrid of taxus trees, has a higher paclitaxel content (Zhou et al. 2019). It has been introduced and cultivated in Sichuan, Chongqing, Yunnan, Zhejiang, Jiangxi, and other places in China. In 2021, approximately 20% of T. media (an average 30% of the affected area per tree) showed obvious shoot and leaf blight symptoms in a plantation of taxus trees (about 40 ha of the planting area), located in Sandaoyan county, Sichuan province, China (GPS, 103°94'60″N, 30°84'97″E). Initially, brown necrotic spots appeared on shoots. Gradually, the spots increased in number, expanded to the leaf attached to the branch, and caused wilting of the shoots and leaves. To identify the pathogen, symptomatic samples were randomly collected. Lesion margins of the diseased leaves and barks were surface sterilized for 1 min in 75% ethanol, rinsed with sterile distilled water three times, dried with sterile filter paper, placed on potato dextrose agar (PDA) amended with streptomycin sulfate (50 mg/liter), and incubated at 28°C in the dark. Six purified fungal isolates were obtained. Collected isolates with similar morphology were described as Botryosphaeria spp. (Zhang et al. 2021). The colonies were initially white, gradually became dark gray with dense erial mycelium after 5 days, and formed black pycnidia (Dimensions, 121.3 to 134.6 µm, n = 5) after 16 days. Conidia were fusiform, aseptate, transparent, and thin-walled (23.6 ± 1.2 × 7.27 ± 1.3 µm, n = 50), similar to B. dothidea (Hattori et al. 2021). For pathogenicity testing, ten 2-year-old seedlings of T. media were selected. Fungal cakes of the isolate Tmsdy-2 were applied to the punctured stems of seedlings and covered with Parafilm. Pieces of sterile medium were used as controls. All the seedlings were incubated at 25 ± 2°C, 50% relative humidity, and 16 h of light in a greenhouse. Four days later, the inoculated seedlings developed brown spots and were blighted in 14 days, with symptoms similar to the original diseased plants. The controls remained healthy. The same fungus was reisolated from the infected tissues and subsequently identified by morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results, confirming Koch's postulates. For molecular identification, the DNA of the isolates was extracted using a Quick-DNA Extraction Kit (Tiangen Biotech, Beijing). The ITS, LSU, SSU, TUB2, and TEF 1-α genes were amplified with the primer pairs ITS1/ITS4, LR0R/LR05, NS1/NS4 (Li et al. 2018), Bt2a/Bt2b, and EF1-728F/EF1-986R (Hattori et al. 2021), respectively. The generated sequences were deposited in GenBank with accession numbers OQ179939 (ITS), OQ179940 (LSU), OQ179942 (SSU), OQ268596 (TUB2), and OQ268597 (TEF 1-α). BLAST analyses showed >99.65% identity with previously deposited sequences of B. dothidea in GenBank. Based on the maximum likelihood method, phylogenetic analysis revealed 100% bootstrap support values with B. dothidea. The fungus was identified as B. dothidea based on morphological and multilocus phylogenetic analyses. To our knowledge, this is the first report of B. dothidea causing shoot and leaf blight of T. media in China. These results will contribute to developing control strategies for this disease.

16.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36850959

RESUMEN

Minimally invasive surgical robots have the advantages of high positioning accuracy, good stability, and flexible operation, which can effectively improve the quality of surgery and reduce the difficulty for doctors to operate. However, in order to realize the translation of the existing RCM mechanism, it is often necessary to add a mobile unit, which is often bulky and occupies most space above the patient's body, thus causing interference to the operation. In this paper, a new type of planar RCM mechanism is proposed. Based on this mechanism, a 3-DOF robotic arm is designed, which can complete the required motion for surgery without adding a mobile unit. In this paper, the geometric model of the mechanism is first introduced, and the RCM point of the mechanism is proven during the motion process. Then, based on the establishment of the geometric model of the mechanism, a kinematics analysis of the mechanism is carried out. The singularity, the Jacobian matrix, and the kinematic performance of the mechanism are analyzed, and the working space of the mechanism is verified according to the kinematic equations. Finally, a prototype of the RCM mechanism was built, and its functionality was tested using a master-slave control strategy.


Asunto(s)
Médicos , Robótica , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Unidades Móviles de Salud , Movimiento (Física)
17.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175953

RESUMEN

1,5-Anhydro-D-fructose (1,5-AF) is a bioactive monosaccharide that is produced by the glycogenolysis in mammalians and is metabolized to 1,5-anhydro-D-glucitol (1,5-AG). 1,5-AG is used as a marker of glycemic control in diabetes patients. 1,5-AF has a variety of physiological activities, but its effects on energy metabolism, including feeding behavior, are unclarified. The present study examined whether 1,5-AF possesses the effect of satiety. Peroral administration of 1,5-AF, and not of 1,5-AG, suppressed daily food intake. Intracerebroventricular (ICV) administration of 1,5-AF also suppressed feeding. To investigate the neurons targeted by 1,5-AF, we investigated c-Fos expression in the hypothalamus and brain stem. ICV injection of 1,5-AF significantly increased c-Fos positive oxytocin neurons and mRNA expression of oxytocin in the paraventricular nucleus (PVN). Moreover, 1,5-AF increased cytosolic Ca2+ concentration of oxytocin neurons in the PVN. Furthermore, the satiety effect of 1,5-AF was abolished in oxytocin knockout mice. These findings reveal that 1,5-AF activates PVN oxytocin neurons to suppress feeding, indicating its potential as the energy storage monitoring messenger to the hypothalamus for integrative regulation of energy metabolism.


Asunto(s)
Oxitocina , Núcleo Hipotalámico Paraventricular , Ratones , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Oxitocina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Mamíferos/metabolismo
18.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569546

RESUMEN

Spermatogonial stem cells (SSCs) are the only primitive spermatogonial cells in males that can naturally transmit genetic information to their offspring and replicate throughout their lives. Phospholipase D family member 6 (PLD6) has recently been found to be a surface marker for SSCs in mice and boars; however, it has not been validated in cattle. The results of reversed transcription-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) found that the relative expression of the PLD6 gene in the testicular tissues of two-year-old Simmental calves was significantly higher than that of six-month-old calves. Immunofluorescent staining further verified the expression of PLD6 protein in bovine spermatogenic cells like germ cell marker DEAD box helicase 4 (DDX4, also known as VASA). Based on multiple bioinformatic databases, PLD6 is a conservative protein which has high homology with mouse Q5SWZ9 protein. It is closely involved in the normal functioning of the reproductive system. Molecular dynamics simulation analyzed the binding of PLD6 as a phospholipase to cardiolipin (CL), and the PLD6-CL complex showed high stability. The protein interaction network analysis showed that there is a significant relationship between PLD6 and piwi-interacting RNA (piRNA) binding protein. PLD6 acts as an endonuclease and participates in piRNA production. In addition, PLD6 in bovine and mouse testes has a similar expression pattern with the spermatogonium-related genes VASA and piwi like RNA-mediated gene silencing 2 (PIWIL2). In conclusion, these analyses imply that PLD6 has a relatively high expression in bovine testes and could be used as a biomarker for spermatogenic cells including SSCs.

19.
Chemistry ; 28(51): e202201169, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35688798

RESUMEN

Photoelectrochemical (PEC) performance of WO3 photoanodes for water splitting is heavily influenced by the orientation of crystal facets. In this work, mono-particle-layer electrodes, assembled by particulate WO3 square plates with highly uniform alignment along the (002) facet, improved PEC water oxidation kinetics and stability. Photo-deposition of Au along the cracks formed on the surface of the plates, which are the edges of {110} facets, was found to further enhance electron collection efficiency. Combination of these two strategies allowed the facet-engineered WO3 electrode to produce significantly higher efficiencies in charge separation and transfer than the electrode prepared without facet orientation. This work has provided a facile route for fabricating a structurally designed WO3 photoelectrode, which is also applicable to other regularly shaped semiconductor photocatalysts with anisotropic charge migration.

20.
Macromol Rapid Commun ; 43(16): e2200326, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35703581

RESUMEN

Singlet fission (SF) is a spin-allowed process in which a singlet state splits into two triplet states. Materials that enable SF have attracted great attention in the last decade, mainly stemming from the potential of overcoming the Shockley-Queisser (SQ) limit in photoenergy conversion. In the past decade, a large number of new molecules exhibiting SF are explored and many devices based on SF materials are studied, though the mechanistic understanding is still obscure. This review focuses on the recent developments of SF materials, including small molecules, oligomers, and polymers. The molecular design strategies and related mechanisms of SF are discussed. Then the dynamics of charge transfer and energy transfer between SF materials and other materials are introduced. Further, the progresses of implementing SF in photovoltaics are discussed. It is hoped that a comprehensive understanding to the SF materials, devices, and mechanism may pave a new way for the design of next generation photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA