Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2211713119, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469770

RESUMEN

The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured [Formula: see text]-resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo.

2.
Phys Rev Lett ; 133(6): 063201, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39178428

RESUMEN

Cavity-free lasing in atmospheric air has stimulated intense research toward a fundamental understanding of underlying physical mechanisms. In this Letter, we identify a new mechanism-a third-harmonic photon mediated resonant energy transfer pathway leading to population inversion in argon via an initial three-photon excitation of nitrogen molecules irradiated by intense 261 nm pulses-that enables bidirectional two-color cascaded lasing in atmospheric air. By making pump-probe measurements, we conclusively show that such cascaded lasing results from superfluorescence rather than amplified spontaneous emission. Such cascaded lasing with the capability of producing bidirectional multicolor coherent pulses opens additional possibilities for remote sensing applications.

3.
Chaos ; 34(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483810

RESUMEN

Low earth orbit (LEO) satellite constellations have emerged as a promising architecture integrated with ground networks, which can offer high-speed Internet services to global users. However, the security challenges faced by satellite networks are increasing, with the potential for a few satellite failures to trigger cascading failures and network outages. Therefore, enhancing the robustness of the network in the face of cascading failures is of utmost importance. This paper aims to explore the robustness of LEO satellite networks when encountering cascading failures and then proposes a modeling method based on virtual nodes and load capacity. In addition, considering that the ground station layout and the number of connected satellites together determine the structure of the final LEO satellite network, we here propose an improved ground station establishment method that is more suitable for the current network model. Finally, the robustness of the LEO satellite networks is deeply studied under two different attacks and cost constraints. Simulations of LEO satellite networks with different topologies show that the maximum load attacks have a destructive impact on the network, which can be mitigated by adjusting the topology and parameters to ensure normal network operation. The current model and related results provide practical insights into the protection of LEO satellite networks, which can mitigate cascading risks and enhance the robustness of LEO systems.

4.
Water Sci Technol ; 89(12): 3192-3207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39150420

RESUMEN

In this study, a novel three-dimensional biofilm electrode reactor (3D-BER) with a graphene oxide (GO)-modified cathode was developed to enhance the denitrification performance of secondary effluent from wastewater treatment plants (SEWTPs). The effects of different hydraulic retention times (HRTs) and currents on the 3D-BER were explored. The results indicated that at the optimal HRT of 4 h and current of 350 mA/m2, the 3D-BER with GO-modified cathode had a higher denitrification rate (2.40 ± 0.1 mg TN/L/h) and less accumulation of intermediate products, especially with 3.34% total nitrogen (TN) molar conversion to N2O. The GO-modified cathode offered a large biocompatible specific surface area and enhanced the conductivity, which favored microbial growth and increased electron transfer efficiency and extracellular enzyme activities. Moreover, the activity of nitrite reductase increased more than that of nitrate reductase to accelerate nitrite reduction, thus facilitating the denitrification process. The proposed 3D-BER provided an effective solution to elevate tertiary denitrification in the SEWTP.


Asunto(s)
Biopelículas , Reactores Biológicos , Desnitrificación , Electrodos , Grafito , Eliminación de Residuos Líquidos , Aguas Residuales , Grafito/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Nitrógeno/química , Purificación del Agua/métodos
5.
Small ; 19(50): e2304406, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37616512

RESUMEN

Defect-rich carbon materials are considered as one of the most promising anodes for potassium-ion batteries due to their enormous adsorption sites of K+ , while the realization of both rate capability and cycling stability is still greatly limited by unstable electrochemical kinetics and inevitable structure degradation. Herein, an Fe3+ -induced hydrothermal-pyrolysis strategy is reported to construct well-tailored hybrid carbon nanotubes network architecture (PP-CNT), in which the short-range graphitic nanodomains are in-situ localized in the pea pod shape hypocrystalline carbon. The N,O codoped hypocrystalline carbon region contributes to abundant defect sites for potassium ion storage, ensuring high reversible capacity. Meanwhile, the short-range graphitic nanodomains with expanded interlayer spacing facilitate stable K+ migration and fast electron transfer. Furthermore, the finite element analysis confirms the volume expansion caused by K+ intercalation can be availably buffered due to the multidirection stress release effect of the unique porous pea pod shape, endowing carbon nanotubes with superior structural integrity. Consequently, the PP-CNT anode exhibits superior potassium-storage performance, including high reversible capacity, exceptional rate capability, and ultralong cycling stability. This work opens a new avenue for the fabrication of advanced carbon materials for achieving durable and fast potassium storage.

6.
Mol Carcinog ; 62(4): 450-463, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36562476

RESUMEN

Triple-negative breast cancer TNBC) is a malignant tumor with high incidence and high mortality that threaten the health of women worldwide. Circular RNAs (circRNAs) are a new class of noncoding RNAs that participate in the biological processes of various tumors, but the regulatory roles of circRNAs in TNBC have not been fully elucidated. In this study, the expression and characterization of circDUSP1 was detected via quantitative real-time PCR, nuclear-cytoplasmic fractionation assay, and fluorescence in situ hybridization. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circDUSP1 in TNBC. The interaction among circDUSP1, miR-761, DACT2 were confirmed by dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments. We identified the circRNA named circDUSP1 that was inversely correlated with tumorigenesis and progression in TNBC. Overexpression of circDUSP1 significantly attenuated cell proliferation, migration, invasion, and epithelial-mesenchymal transition, while increased the sensitivity of TNBC cells to paclitaxel. In-depth mechanism analysis indicated that circDUSP1 acts as an endogenous sponge of miR-761 to reduce its suppression on target gene DACT2 expression in TNBC. Upregulation of miR-761 or downregulation of DACT2 partially reversed the biological process of TNBC and the prognosis of paclitaxel affected by circDUSP1. Taken together, our findings revealed a role for the regulation of the miR-761/DACT2 axis by circDUSP1 in the biological process of TNBC. These results provided new insights into the biological mechanism and targeted therapy of TNBC.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , ARN Circular/genética , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420601

RESUMEN

To investigate the problem of the lag stability of the capacitance value during the level drop of the dirty U-shaped liquid level sensor, the equivalent circuit of the dirty U-shaped liquid level sensor was analyzed, and the transformer bridge's principle circuit that uses RF admittance technology was designed accordingly. Using the method of controlling a single variable, the measurement accuracy of the circuit was simulated when the dividing capacitance and the regulating capacitance had different values. Then, the right parameter values for the dividing capacitance and the regulating capacitance were found. On this basis, the change of the sensor output capacitance and the change of the length of the attached seawater mixture were controlled separately under the condition of removing the seawater mixture. The simulation outcomes showed that the measurement accuracy was excellent under various situations, validating the transformer principle bridge circuit's efficacy in minimizing the influence of the output capacitance value's lag stability.


Asunto(s)
Suministros de Energía Eléctrica , Simulación por Computador , Capacidad Eléctrica
8.
Opt Express ; 30(14): 25696-25706, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237094

RESUMEN

Absolute density measurements of low-ionization-degree or low-density plasmas ionized by lasers are very important for understanding strong-field physics, atmospheric propagation of intense laser pulses, Lidar etc. A cross-polarized common-path temporal interferometer using balanced detection was developed for measuring plasma density with a sensitivity of ∼0.6 mrad, equivalent to a plasma density-length product of ∼2.6 × 1013 cm-2 if using an 800 nm probe laser. By using this interferometer, we have investigated strong-field ionization yield versus intensity for various noble gases (Ar, Kr, and Xe) using 800 nm, 55 fs laser pulses with both linear (LP) and circular (CP) polarization. The experimental results were compared to the theoretical models of Ammosov-Delone-Krainov (ADK) and Perelomov-Popov-Terent'ev (PPT). We find that the measured phase change induced by plasma formation can be explained by the ADK theory in the adiabatic tunneling ionization regime, while PPT model can be applied to all different regimes. We have also measured the photoionization and fractional photodissociation of molecular (MO) hydrogen. By comparing our experimental results with PPT and MO-PPT models, we have determined the likely ionization pathways when using three different pump laser wavelengths of 800 nm, 400 nm, and 267 nm.

9.
Water Sci Technol ; 86(3): 511-529, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35960834

RESUMEN

Nitrate loss in interflow caused serious nitrate pollution of neighboring water bodies in the purple soil region of China's Sichuan Province. In this study, Mg/Fe(Al)-calcined layered double hydroxides (Mg/Fe(Al)-CLDHs) with varied Mg/Fe(Al) ratios were synthesized for nitrate removal from interflow, and 3:1 Mg/Fe CLDH exhibited the best adsorption performance. The effects of initial pH, adsorbent dosage and co-existing anions on the adsorption performance were investigated by batch experiments. The best-fitting kinetic and isothermal models for nitrate adsorption were the pseudo-second-order model and Freundlich model, respectively, indicating that the adsorption process was a physical-chemical multilayer process. The maximum adsorption capacity of nitrate was 73.36 mg/g, which was higher than that of many other commonly used adsorbents. The adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) techniques, and the XRD and FT-IR results revealed that the adsorption mechanism involved original layered structure reconstruction and ion-exchange interaction. Under the coexistence of SO42- and Cl-, 75.63% nitrate in interflow could be removed after 6 h of adsorption. Overall, the synthesized Mg/Fe CLDH is an effective and low-cost nitrate adsorbent for in-situ nitrate removal.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Hidróxidos/química , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química
10.
Phys Rev Lett ; 126(6): 064801, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33635713

RESUMEN

Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons. Physically, self-focusing and high-energy photon emission originate from the beam interaction with the near-field transition radiation accompanying the beam-foil collision. This near field radiation is of amplitude comparable with the beam self-field, and can be strong enough that a single emitted photon can carry away a significant fraction of the emitting electron energy. After beam collision with multiple foils, femtosecond collimated electron and photon beams with number density exceeding that of a solid are obtained. The relative simplicity, unique properties, and high efficiency of this gamma-ray source open up new opportunities for both applied and fundamental research including laserless investigations of strong-field QED processes with a single electron beam.

11.
World J Surg Oncol ; 19(1): 320, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736481

RESUMEN

BACKGROUND: Carbon nanoparticles (CNs) are tracers used in thyroid surgery of patients with thyroid cancer (TC) to help remove lymph nodes and protect the parathyroid gland. The facilitative effect of carbon nanoparticles in endoscopic thyroidectomy and prophylactic central neck dissection (pCND) has not been reported. METHODS: The protective effect on parathyroid gland (PG) function and the numbers of identified parathyroid glands and central lymph nodes in endoscopic thyroid surgery through the total mammary areolas approach were compared between the CN and control groups. RESULTS: All endoscopic thyroidectomies were successfully completed. No difference was found in either group regarding the general characteristics or operative complications. The mean number of superior PGs and inferior PGs identified in situ or in the dissected central lymph tissues was not different between the groups. The mean number of lymph nodes removed by unilateral CND was greater in the CN group than in the control group. However, there was no difference in the number of harvested lymph nodes when excluding the LNs less than 5 mm, which exhibit an extremely low metastatic rate. CONCLUSION: Carbon nanoparticles do not improve the protective effect on the parathyroid gland, especially the inferior glands, in endoscopic thyroid surgery through the total mammary areolas approach. There is no need to use CNs to facilitate the lymph node harvest in endoscopic prophylactic unilateral CND.


Asunto(s)
Nanopartículas , Neoplasias de la Tiroides , Carbono , Humanos , Ganglios Linfáticos/cirugía , Disección del Cuello , Pezones , Pronóstico , Neoplasias de la Tiroides/cirugía , Tiroidectomía
12.
J Cell Mol Med ; 24(13): 7590-7599, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32427405

RESUMEN

Kaempferol (kaem) is a dietary flavonoid found in a variety of fruits and vegetables. The inhibitory effects of kaem on primary tumour growth have been extensively investigated; however, its effects on tumour metastasis are largely unknown. In the present study, we found that kaem significantly suppresses both primary tumour growth and lung metastasis in mouse breast tumour model. Furthermore, decreased expression of citrullinated histone H3 (H3-cit), a biomarker of neutrophil extracellular traps (NETs), had been founded in metastatic lung upon treated with kaem. The reduction of H3-cit is not, however, due to the cytotoxicity of kaem on neutrophils since the frequency of CD11b+ Ly6G+ neutrophils did not change in lung, tumour or blood in the presence of kaem. We then confirm the anti-NETs effects of kaem in vitro by co-culturing mouse neutrophils and kaem. Supplementing the neutrophils with GSK484, a potent NET inhibitor, totally abrogated the inhibitory effects of kaem on tumour metastasis while having little or no impact on primary tumour growth, indicating the specificity of kaem acting on NET formation and tumour metastasis. We also found that kaem suppressed ROS production in mouse bone-marrow derived neutrophils. Supplementing with the ROS scavenger DPI abrogated kaem's effects on NET formation, suggesting the involvement of kaempferol in NADPH/ROS-NETs signalling. Finally, we applied the kaem on NET-deficient PAD4-/- mice and found decreased primary tumour volume and weight but similar lung metastatic tumour with kaempferol treatment. Therefore, our findings reveal a novel mechanism of kaem in breast cancer development by targeting NETs induced tumour metastasis.


Asunto(s)
Trampas Extracelulares/metabolismo , Quempferoles/farmacología , Metástasis de la Neoplasia/patología , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Trampas Extracelulares/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
13.
Phys Rev Lett ; 125(25): 255001, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416364

RESUMEN

The temporal evolution of the magnetic field associated with electron thermal Weibel instability in optical-field ionized plasmas is measured using ultrashort (1.8 ps), relativistic (45 MeV) electron bunches from a linear accelerator. The self-generated magnetic fields are found to self-organize into a quasistatic structure consistent with a helicoid topology within a few picoseconds and such a structure lasts for tens of picoseconds in underdense plasmas. The measured growth rate agrees well with that predicted by the kinetic theory of plasmas taking into account collisions. Magnetic trapping is identified as the dominant saturation mechanism.

14.
Environ Sci Technol ; 53(3): 1471-1481, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30605315

RESUMEN

This work reports the in vivo uptake and translocation of PNPs in the one-year grown terrestrial plant, Murraya exotica ( M. exotica), as investigated by two-photon excitation and time-resolved (TPE-TR) optical imaging with a large field of view (FOV, 32 × 32 mm2) in a noninvasive and real-time manner. The PNPs (⟨ Rh⟩ = 12 ± 4.5 nm) synthesized from poly(styrene- co-maleic anhydride) (SMA) were Eu-luminescence labeled (λL ≈ 617 nm). On exposing the roots of living M. exotica plants to the colloidal suspension of SMA PNPs at different concentrations, the spatiotemporal evolution of SMA PNPs along plant stems (60 mm in length) were monitored by TPE-TR imaging, which rendered rich information on the uptake and translocation of PNPs without any interference from the autofluorescence of the plant tissues. The TPE-TR imaging combined with the high-resolution anatomy revealed an intercell-wall route in the lignified epidermis of M. exotica plants for SMA PNP uptake and translocation, as well as the similar accumulation kinetics at different positions along the plant stems. We modeled the accumulation kinetics with Gaussian distribution to account for the trapping probability of a SMA PNP by the lignified cell walls, allowing the statistical parameters, the average trapping time ( tm) and its variance (σ), to be derived for the quantification of the PNP accumulation in individual plants. The TPE-TR imaging and the analysis protocols established herein will be helpful in exploring the mechanism of plant-PNP interaction under physiological condition.


Asunto(s)
Murraya , Nanopartículas , Anhídridos Maleicos , Imagen Óptica , Estireno
15.
Environ Sci Technol ; 52(5): 2953-2962, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29397704

RESUMEN

Perfluorooctanesulfonate (PFOS) is a toxic, bioaccumulative, and highly persistent anthropogenic chemical. Hydrated electrons ( eaq-) are potent nucleophiles that can effectively decompose PFOS. In previous studies, eaq- are mainly produced by photoionization of aqueous anions or aromatic compounds. In this study, we proposed a new photolytic strategy to generate eaq- and in turn decompose PFOS, which utilizes nitrilotriacetic acid (NTA) as a photosensitizer to induce water photodissociation and photoionization, and subsequently as a scavenger of hydroxyl radical (•OH) to minimize the geminate recombination between •OH and eaq-. The net effect is to increase the amount of eaq- available for PFOS degradation. The UV/NTA process achieved a high PFOS degradation ratio of 85.4% and a defluorination ratio of 46.8% within 10 h. A pseudo-first-order rate constant ( k) of 0.27 h-1 was obtained. The laser flash photolysis study indicates that eaq- is the dominant reactive species responsible for PFOS decomposition. The generation of eaq- is greatly enhanced and its half-life is significantly prolonged in the presence of NTA. The electron spin resonance (ESR) measurement verified the photodissociation of water by detecting •OH. The model compound study indicates that the acetate and amine groups are the primary reactive sites.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácido Nitrilotriacético , Fotólisis
16.
J Environ Sci (China) ; 48: 200-208, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27745665

RESUMEN

Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.


Asunto(s)
Eliminación de Residuos/métodos , Acero , Residuos/análisis , Ácidos Grasos Volátiles/química , Fermentación , Concentración de Iones de Hidrógeno , Hidrólisis , Fósforo , Hidróxido de Sodio/química
17.
Genes Dis ; 11(4): 101119, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523672

RESUMEN

Diabetic kidney disease is a leading cause of end-stage renal disease, making it a global public health concern. The molecular mechanisms underlying diabetic kidney disease have not been elucidated due to its complex pathogenesis. Thus, exploring these mechanisms from new perspectives is the current focus of research concerning diabetic kidney disease. Ion channels are important proteins that maintain the physiological functions of cells and organs. Among ion channels, potassium channels stand out, because they are the most common and important channels on eukaryotic cell surfaces and function as the basis for cell excitability. Certain potassium channel abnormalities have been found to be closely related to diabetic kidney disease progression and genetic susceptibility, such as KATP, KCa, Kir, and KV. In this review, we summarized the roles of different types of potassium channels in the occurrence and development of diabetic kidney disease to discuss whether the development of DKD is due to potassium channel dysfunction and present new ideas for the treatment of DKD.

18.
Int J Gen Med ; 17: 1233-1251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562210

RESUMEN

Background: Breast cancer (BC) continues to pose a substantial challenge to global health, necessitating an enhanced understanding of its fundamental mechanisms. Among its various pathological classifications, breast invasive carcinoma (BRCA) is the most prevalent. The role of the transcription factor forkhead box P3 (FOXP3), associated with regulatory T cells, in BRCA's diagnosis and prognosis remains insufficiently explored, despite its recognized importance. Methods: We examined the mRNA expression profile of FOXP3 in BRCA patients, assessing its correlation with disease detection, patient survival, immune checkpoint alterations, and response to anticancer drugs. Results: Our analysis revealed significantly elevated FOXP3 mRNA levels in BRCA patients, with a 95.7% accuracy for BRCA detection based on the area under the curve. High FOXP3 mRNA levels were positively correlated with overall survival and showed significant associations with CTLA4, CD274, PDCD1, TMB, and immune cell infiltration status. Furthermore, FOXP3 mRNA expression was linked to the efficacy of anticancer drugs and the tumor inflammation signature. Discussion: These findings suggest that FOXP3 serves as a promising biomarker for BRCA, offering valuable insights into its diagnosis and prognosis. The correlation between FOXP3 expression and immune checkpoint alterations, along with its predictive value for treatment response, underscores its potential in guiding therapeutic strategies. Conclusion: FOXP3 stands out as an influential factor in BRCA, highlighting its diagnostic accuracy and prognostic value. Its association with immune responses and treatment efficacy opens new avenues for research and clinical applications, positioning FOXP3 as a vital target for further investigation in BRCA management.

19.
Water Res ; 258: 121804, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781621

RESUMEN

It has recently been discovered that HFPO-TA (a processing aid in the production of fluoropolymers) has high levels of bioaccumulation and biotoxicity. Hydrated electrons (eaq-) have been proposed to be potent nucleophiles that may decompose PFAS. Unlike previous studies in which the generation of eaq- was often restricted to anaerobic or highly alkaline environments, in this study, we applied the UV/SO32-/I- process under mild conditions of neutrality, low source chemical demand, and open-air, which achieved effective degradation (81.92 %, 0.834 h-1) and defluorination (48.99 %, 0.312 h-1) of HFPO-TA. With I- as the primary source of eaq-, SO32- acting as an I- regenerator and oxidizing substances scavenger, UV/SO32-/I- outperformed others under mild circumstances. The eaq- were identified as the main active species by quenching experiments and electron paramagnetic resonance (EPR). During degradation, the first site attacked by eaq- was the ether bond (C6-O7), followed by the generation of HFPO-DA, TFA, acetic and formic acid. Degradation studies of other HFPOs have shown that the defluorination of HFPOs was accompanied by a clear chain-length correlation. At last, toxicological experiments confirmed the safety of the process. This study updated our understanding of the degradation of newly PFASs and the application of eaq- mediated photoreductive approaches under mild conditions.


Asunto(s)
Rayos Ultravioleta , Yoduros/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Halogenación
20.
Front Physiol ; 14: 1127893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923292

RESUMEN

The inward-rectifying potassium channel subunit Kir5.1, encoded by Kcnj16, can form functional heteromeric channels (Kir4.1/5.1 and Kir4.2/5.1) with Kir4.1 (encoded by Kcnj10) or Kir4.2 (encoded by Kcnj15). It is expressed in the kidneys, pancreas, thyroid, brain, and other organs. Although Kir5.1 cannot form functional homomeric channels in most cases, an increasing number of studies in recent years have found that the functions of this subunit should not be underestimated. Kir5.1 can confer intracellular pH sensitivity to Kir4.1/5.1 channels, which can act as extracellular potassium sensors in the renal distal convoluted tubule segment. This segment plays an important role in maintaining potassium and acid-base balances. This review summarizes the various pathophysiological processes involved in Kir5.1 and the expression changes of Kir5.1 as a differentially expressed gene in various cancers, as well as describing several other disease phenotypes caused by Kir5.1 dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA