Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Environ Microbiol ; 20(2): 734-754, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29235710

RESUMEN

Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.


Asunto(s)
Adaptación Fisiológica/fisiología , Archaea/genética , Archaea/metabolismo , Plancton/crecimiento & desarrollo , Ríos/microbiología , Archaea/clasificación , Archaea/aislamiento & purificación , China , Ecología , Estuarios , Metagenoma/genética , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Agua de Mar/microbiología
2.
Appl Microbiol Biotechnol ; 102(1): 461-474, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103169

RESUMEN

Archaea are widespread and abundant in aquatic and terrestrial habitats and play fundamental roles in global biogeochemical cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing changes in archaeal community structure and biogeochemical processes in nature. However, the linkage between the archaeal populations and the GDGT distribution in the natural environment is poorly examined, which hindered the application and interpretation of GDGT-based climate or environmental proxies. We addressed this question by investigating changes in archaeal lipid composition and community structure in the context of environmental variables along the subtropical Jiulong River Watershed (JRW) and Jiulong River Estuary (JRE) in southern China. The results showed that both the archaeal cells and the polar GDGTs (P-GDGTs) in the JRW and JRE were mostly autochthonous rather than exogenous input from surrounding soils. We further found that only five (Methanobacteriales, Ca. Bathyarchaeota, Marine Benthic Groups A (MBGA), Marine Benthic Groups B (MBGB), and Marine Benthic Groups D (MBGD)) out of sixteen lineages showed significant impacts on the composition of P-GDGTs, suggesting the significant contribution of those archaea to the changes of P-GDGT compositions. Salinity and total phosphorus (TP) showed significant impact on the distribution of both genetic and P-GDGTs compositions of archaea; whereas, sand and silt contents only had significant impact on the P-GDGTs. MBGD archaea, which occur widely in marine sediments, showed positive correlations with P-TEX86 in the JRW and JRE, suggesting that uncultivated MBGD might also contribute to the variations in TEX86 signals in marine sediments. This study provided insight into the sources of P-GDGTs and the factors controlling their distributions in river-dominated continental margins, which has relevance to applications of GDGT-based proxies in paleoclimate studies.


Asunto(s)
Archaea/química , Archaea/metabolismo , Microbiología Ambiental , Éteres de Glicerilo/análisis , Lípidos/análisis , Archaea/genética , Archaea/aislamiento & purificación , China , Ecosistema , Estuarios , Sedimentos Geológicos/química , Éteres de Glicerilo/química , Lípidos/química , Ríos
3.
Environ Microbiol ; 17(5): 1600-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25142282

RESUMEN

Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.


Asunto(s)
Archaea/metabolismo , Sedimentos Geológicos/microbiología , Éteres de Glicerilo/metabolismo , Manantiales de Aguas Termales/microbiología , Lípidos de la Membrana/metabolismo , Archaea/genética , Desulfurococcales/genética , Desulfurococcales/aislamiento & purificación , Ambiente , Éteres de Glicerilo/análisis , Concentración de Iones de Hidrógeno , Lípidos de la Membrana/análisis , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año , Microbiología del Suelo , Sulfolobales/genética , Sulfolobales/aislamiento & purificación , Temperatura , Thermoplasmales/genética , Thermoplasmales/aislamiento & purificación , Tibet
4.
Environ Microbiol ; 15(4): 1160-75, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23126508

RESUMEN

Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Variación Genética/genética , Manantiales de Aguas Termales/microbiología , Desequilibrio Ácido-Base , Archaea/genética , Bacterias/genética , China , Crenarchaeota/genética , Genes de ARNr , Manantiales de Aguas Termales/química , Filogenia , Proteobacteria/genética , ARN Ribosómico 16S/genética , Especificidad de la Especie , Sulfolobales/genética , Temperatura , Tibet
5.
Int J Syst Evol Microbiol ; 63(Pt 3): 801-808, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22581902

RESUMEN

Magnetotactic bacteria are a morphologically, metabolically and phylogenetically disparate array of bacteria united by the ability to biomineralize membrane-encased, single-magnetic-domain mineral crystals (magnetosomes) that cause the cell to orientate along the Earth's geomagnetic field. The most commonly observed type of magnetotactic bacteria is the ubiquitous magnetotactic cocci, which comprise their own phylogenetic group. Strain MC-1(T), a member of this group, was isolated from water collected from the oxic-anoxic interface of the Pettaquamscutt Estuary in Rhode Island, USA, and cultivated in axenic culture. Cells of strain MC-1(T) are roughly spherical, with two sheathed bundles of flagella at a single pole (bilophotrichous). Strain MC-1(T) uses polar magnetotaxis, and has a single chain of magnetite crystals per cell. Cells grow chemolithoautotrophically with thiosulfate or sulfide as the electron donors, and chemo-organoheterotrophically on acetate. During autotrophic growth, strain MC-1(T) relies on the reductive tricarboxylic acid cycle for CO2 fixation. The DNA G+C content is 54.2 mol%. The new genus and species Magnetococcus marinus gen. nov., sp. nov. are proposed to accommodate strain MC-1(T) ( = ATCC BAA-1437(T)  = JCM 17883(T)), which is nominated as the type strain of Magnetococcus marinus. A new order (Magnetococcales ord. nov.) and family (Magnetococcaceae fam. nov.) are proposed for the reception of Magnetococcus and related magnetotactic cocci, which are provisionally included in the Alphaproteobacteria as the most basal known lineage of this class.


Asunto(s)
Alphaproteobacteria/clasificación , Filogenia , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Ciclo del Ácido Cítrico , ADN Bacteriano/genética , Ácidos Grasos/análisis , Magnetosomas/microbiología , Datos de Secuencia Molecular , Fijación del Nitrógeno , ARN Ribosómico 16S/genética , Rhode Island , Agua de Mar/microbiología , Análisis de Secuencia de ADN
6.
Appl Environ Microbiol ; 77(21): 7479-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21890672

RESUMEN

The South China Sea (SCS) is the largest marginal sea of the western Pacific Ocean, yet little is known about archaeal distributions and TEX86-based temperatures in this unique oceanic setting. Here we report findings of abundances in both core lipids (CL) and intact polar lipids (IPL) of Archaea from surface water (CL only) and core-top sediments from different regions of the SCS. TEX86-derived temperatures were also calculated for these samples. The surface water had extremely low abundances of CL (average of 0.05 ± 0.13 ng/liter; n = 75), with higher values present in regions where upwelling is known to occur. The core-top sediments had CL values of 0.1 to 0.9 µg/g, which are on the low end of CL concentrations reported for other marine sediments and may reflect the oligotrophic nature of the open SCS. The IPL of Archaea accounted for 6 to 36.4% of total lipids (CL plus IPL), indicating that the majority of archaeal lipids in core-top sediments were derived from nonliving cells. The TEX86-based temperatures of surface water were overall lower than satellite-based sea surface temperatures or CTD-measured in situ temperatures. The core-top sediment samples, however, had TEX86 temperatures very close to the mean annual sea surface temperatures, except for samples with water depths of less than 100 m. Our results demonstrated low and heterogeneous distributions of archaeal lipids in surface water and core-top sediments of the SCS, which may reflect local or regional differences in productivity of Archaea. While TEX86-based temperatures for core-top marine sediments at deep water depths (>100 m) generally reflected mean annual sea surface temperatures, TEX86 temperatures in surface water varied basin wide and underestimated sea surface temperatures in most locations for the season when surface water samples were collected.


Asunto(s)
Archaea/química , Sedimentos Geológicos/química , Lípidos/análisis , Agua de Mar/química , China , Sedimentos Geológicos/microbiología , Océano Pacífico , Agua de Mar/microbiología , Temperatura
7.
Extremophiles ; 15(1): 59-65, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21125411

RESUMEN

Cyclization in glycerol dibiphytanyl glycerol tetraethers (GDGTs) results in internal cyclopentane moieties which are believed to confer thermal stability to crenarchaeal membranes. While the average number of rings per GDGT lipid (ring index) is positively correlated with temperature in many temperate environments, poor correlations are often observed in geothermal environments, suggesting that additional parameters may influence GDGT core lipid composition in these systems. However, the physical and chemical parameters likely to influence GDGT cyclization which are often difficult to decouple in geothermal systems, making it challenging to assess their influence on lipid composition. In the present study, the influence of temperature (range 65-81°C), pH (range 3.0-5.0), and ionic strength (range 10.1-55.7 mM) on GDGT core lipid composition was examined in the hyperthermoacidophile Acidilobus sulfurireducens, a crenarchaeon originally isolated from a geothermal spring in Yellowstone National Park, Wyoming. When cultivated under defined laboratory conditions, the composition of individual and total GDGTs varied significantly with temperature and to a lesser extent with the pH of the growth medium. Ionic strength over the range of values tested did not influence GDGT composition. The GDGT core lipid ring index was positively correlated with temperature and negatively correlated with pH, suggesting that A. sulfurireducens responds to increasing temperature and acidity by increasing the number of cyclopentyl rings in GDGT core membrane lipids.


Asunto(s)
Crenarchaeota/metabolismo , Éteres de Glicerilo/metabolismo , Lípidos de la Membrana/metabolismo , Crenarchaeota/crecimiento & desarrollo , Calor , Concentración de Iones de Hidrógeno
8.
Microb Ecol ; 62(3): 549-63, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21597940

RESUMEN

Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.


Asunto(s)
Crenarchaeota/crecimiento & desarrollo , Ecosistema , Genes Arqueales , Agua de Mar/microbiología , Microbiología del Agua , China , Crenarchaeota/clasificación , Crenarchaeota/genética , ADN de Archaea/genética , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética
9.
ISME J ; 14(3): 880, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31748708

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Extremophiles ; 13(3): 447-59, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19247786

RESUMEN

A coordinated study of water chemistry, sediment mineralogy, and sediment microbial community was conducted on four >73 degrees C springs in the northwestern Great Basin. Despite generally similar chemistry and mineralogy, springs with short residence time (approximately 5-20 min) were rich in reduced chemistry, whereas springs with long residence time (>1 day) accumulated oxygen and oxidized nitrogen species. The presence of oxygen suggested that aerobic metabolisms prevail in the water and surface sediment. However, Gibbs free energy calculations using empirical chemistry data suggested that several inorganic electron donors were similarly favorable. Analysis of 298 bacterial 16S rDNAs identified 36 species-level phylotypes, 14 of which failed to affiliate with cultivated phyla. Highly represented phylotypes included Thermus, Thermotoga, a member of candidate phylum OP1, and two deeply branching Chloroflexi. The 276 archaeal 16S rDNAs represented 28 phylotypes, most of which were Crenarchaeota unrelated to the Thermoprotei. The most abundant archaeal phylotype was closely related to "Candidatus Nitrosocaldus yellowstonii", suggesting a role for ammonia oxidation in primary production; however, few other phylotypes could be linked with energy calculations because phylotypes were either related to chemoorganotrophs or were unrelated to known organisms.


Asunto(s)
Sedimentos Geológicos/microbiología , Microbiología del Agua , Filogenia , ARN Ribosómico 16S/genética , Termodinámica , Estados Unidos , Difracción de Rayos X
11.
J Basic Microbiol ; 49 Suppl 1: S87-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19322839

RESUMEN

Molecular investigations of the sulfate reducing bacteria that target the dissimilatory sulfite-reductase subunit A gene (dsr A) are plagued by the nonspecific performance of conventional PCR primers. Here we describe the incorporation of the FailSafe PCR System to optimize environmental analysis of dsr A by PCR amplification and denaturing gradient gel electrophoresis. PCR-DGGE analysis of dsr A composition revealed that SRB diversity was greater and more variable throughout the vertical profile of a marine sediment core obtained from a gas hydrate site (GC234) in the Gulf of Mexico than in a sediment core collected from a nearby site devoid of gas hydrates (NBP). Depth profiled dsr B abundance corresponded with sulfate reduction rates at both sites, though measurements were higher at GC234. This study exemplifies the numerical and functional importance of sulfate reducing bacteria in deep-sea sedimentary environments, and incremental methodological advancements, as described herein, will continue to streamline the analysis of sulfate reducer communities in situ.


Asunto(s)
Proteínas Bacterianas/genética , Sedimentos Geológicos/microbiología , Hidrogenosulfito Reductasa/genética , Sulfatos/metabolismo , Bacterias Reductoras del Azufre/genética , ADN Bacteriano/genética , Electroforesis en Gel de Poliacrilamida/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/aislamiento & purificación
12.
Appl Environ Microbiol ; 74(11): 3523-32, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18390673

RESUMEN

Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.


Asunto(s)
Crenarchaeota/química , Éteres de Glicerilo/análisis , Manantiales de Aguas Termales/química , Manantiales de Aguas Termales/microbiología , Suelo/análisis , China , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Crenarchaeota/aislamiento & purificación , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Federación de Rusia , Temperatura , Tailandia , Estados Unidos
13.
Appl Environ Microbiol ; 74(20): 6417-26, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18676703

RESUMEN

Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.


Asunto(s)
Archaea/genética , Proteínas Arqueales/genética , ADN de Archaea/genética , ADN de Archaea/aislamiento & purificación , Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/microbiología , Oxidorreductasas/genética , Archaea/aislamiento & purificación , China , Análisis por Conglomerados , ADN de Archaea/química , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , Análisis de Componente Principal , Federación de Rusia , Análisis de Secuencia de ADN , Homología de Secuencia , Estados Unidos
14.
Front Microbiol ; 8: 1200, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717356

RESUMEN

Crenarchaeol is a unique isoprenoid glycerol dibiphytanyl glycerol tetraether (iGDGT) lipid, which is only identified in cultures of ammonia-oxidizing Thaumarchaeota. However, the taxonomic origins of crenarchaeol have been debated recently. The archaeal populations, other than Thaumarchaeota, may have associations with the production of crenarchaeol in ecosystems characterized by non-thaumarchaeotal microorganisms. To this end, we investigated 47 surface soils from upland and wetland soils and rice fields and another three surface sediments from river banks. The goal was to examine the archaeal community compositions in comparison with patterns of iGDGTs in four fractional forms (intact polar-, core-, monoglycosidic- and diglycosidic-lipid fractions) along gradients of environments. The DistLM analysis identified that Group I.1b Thaumarchaeota were mainly responsible for changes in crenarchaeol in the overall soil samples; however, Thermoplasmatales may also contribute to it. This is further supported by the comparison of crenarchaeol between samples characterized by methanogens, Thermoplasmatales or Group I.1b Thaumarchaeota, which suggests that the former two may contribute to the crenarchaeol pool. Last, when samples containing enhanced abundance of Thermoplasmatales and methanogens were considered, crenarchaeol was observed to correlate positively with Thermoplasmatales and archaeol, respectively. Collectively, our data suggest that the crenarchaeol production is mainly derived from Thaumarchaeota and partly associated with uncultured representatives of Thermoplasmatales and archaeol-producing methanogens in soil environments that may be in favor of their growth. Our finding supports the notion that Thaumarchaeota may not be the sole source of crenarchaeol in the natural environment, which may have implication for the evolution of lipid synthesis among different types of archaea.

15.
Front Microbiol ; 8: 2077, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163386

RESUMEN

TEX86 [TetraEther indeX of glycerol dialkyl glycerol tetraethers (GDGTs) with 86 carbon atoms] has been widely applied to reconstruct (paleo-) sea surface temperature. Marine Group I (MG-I) Thaumarchaeota were thought to be the primary source of GDGTs constituting the TEX86 formula; however, recent research has suggested that Marine Group II (MG-II) Euryarchaeota may also contribute significantly to the GDGT pool in the ocean. Little is known regarding the potential impact of MG-II Euryarchaeota-derived GDGTs on TEX86 values recorded in marine sediments. In this study, we assessed the relationship between distributions of GDGTs and MG-II Euryarchaeota and evaluated its potential effect on the TEX86 proxy. Lipid and DNA analyses were performed on suspended particulate matter and surface sediments collected along a salinity gradient from the lower Pearl River (river water) and its estuary (mixing water) to the coastal South China Sea (SCS, seawater). TEX86-derived temperatures from the water column and surface sediments were significantly correlated and both were lower than satellite-based temperatures. The ring index (RI) values in these environments were higher than predicted from the calculated TEX86-RI correlation, indicating that the GDGT pool in the water column of the PR estuary and coastal SCS comprises relatively more cyclopentane rings, which thereby altered TEX86 values. Furthermore, the abundance of MG-II Euryarchaeota 16S rRNA gene in the mixing water was two to three orders of magnitude higher than those observed in the river or seawater. Significant linear correlations were observed between the gene abundance ratio of MG-II Euryarchaeota to total archaea and the fractional abundance of GDGTs with cyclopentane rings. Collectively, these results suggest that MG-II Euryarchaeota likely produce a large proportion of GDGTs with 1-4 cyclopentane moieties, which may bias TEX86 values in the water column and sediments. As such, valid interpretation of TEX86 values in the sediment record, particularly in coastal oceans, should consider the contribution from MG-II Euryarchaeota.

16.
Front Microbiol ; 8: 1098, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28663746

RESUMEN

Temperature, nutrients, and salinity are among the important factors constraining the distribution and abundance of microorganisms in the ocean. Marine Group II (MGII) belonging to Euryarchaeota commonly dominates the planktonic archaeal community in shallow water and Marine Group I (MGI, now is called Thaumarchaeota) in deeper water in global oceans. Results of quantitative PCR (qPCR) and 454 sequencing in our study, however, showed the dominance of MGII in planktonic archaea throughout the water column of the northeastern South China Sea (SCS) that is characterized by strong water mixing. The abundance of ammonia-oxidizing archaea (AOA) representing the main group of Thaumarchaeota in deeper water in the northeastern SCS was significantly lower than in other oceanic regions. Phylogenetic analysis showed that the top operational taxonomic units (OTUs) of the MGII occurring predominantly below 200 m depth may be unique in the northeastern SCS based on the observation that they are distantly related to known sequences (identity ranging from 90-94%). The abundance of MGII was also significantly correlated with total bacteria in the whole column, which may indicate that MGII and bacteria may have similar physiological or biochemical properties or responses to environmental variation. This study provides valuable information about the dominance of MGII over AOA in both shallow and deep water in the northeastern SCS and highlights the need for comprehensive studies integrating physical, chemical, and microbial oceanography.

17.
FEMS Microbiol Ecol ; 57(2): 251-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16867143

RESUMEN

Methanotrophs are ubiquitous in soil, fresh water and the open ocean, but have not been well characterized in deep-sea hydrocarbon seeps and gas hydrates, where methane is unusually abundant. Here we report the presence of new functional genes for the aerobic oxidation of methane by methanotrophs in marine sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. Samples were collected from two hydrate locations (GC185 and GC234): one hydrocarbon-seep location at a brine pool (GC233) and one background-marine location about 1.2 miles north of the brine pool (NBP). Community DNA was extracted from each location to establish clone libraries for the pmoA functional gene using a PCR-based cloning approach. Three hundred and ninety clones were screened by sequencing and 46 operational taxonomic units were obtained. Eight operational taxonomic units were present in every sample; one of them was predominant and accounted for 22.8-25.3% of each clone library. Principal-component analysis indicated that samples GC185 and GC234 were closely related and, along with GC233, were significantly different from NBP. These results indicate that methanotrophic communities may be similarly impacted by hydrocarbons at the gas-hydrate and seep sites, and can be distinguished from methanotrophic communities in the normal marine sediment. Furthermore, cluster analysis showed that 84.8% of operational taxonomic units from all samples formed distinct clusters, which could not be grouped with any published pmoA sequences, indicating that a considerable number of novel methanotrophic species may exist in the Gulf of Mexico.


Asunto(s)
Archaea/genética , Bacterias/genética , Genes Arqueales , Genes Bacterianos , Sedimentos Geológicos/microbiología , Metano/metabolismo , Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia , Microbiología del Agua
18.
Front Microbiol ; 7: 1323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625636

RESUMEN

The abundance and composition of glycerol dibiphytanyl glycerol tetraether (GDGT) and glycerol tribiphytanyl glycerol tetraether (GTGT) lipids were determined as a function of growth phase as a proxy for nutrient availability, the pH of growth medium, and incubation temperature in cultures of the thermoacidophile Picrophilus torridus. Regardless of the cultivation condition, the abundance of GDGTs and GTGTs was greater in the polar than core fraction, with a marked decrease in core GDGTs in cultures harvested during log phase growth. These data are consistent with previous suggestions indicating that core GDGTs are re-functionalized during polar lipid synthesis. Under all conditions examined, polar lipids were enriched in a GDGT with 2 cyclopentyl rings (GDGT-2), indicating GDGT-2 is the preferred lipid in this taxon. However, lag or stationary phase grown cells or cells subjected to pH or thermal stress were enriched in GDGTs with 4, 5, or 6 rings and depleted in GDGTs with 1, 2, 3, rings relative to log phase cells grown under optimal conditions. Variation in the composition of polar GDGT lipids in cells harvested during various growth phases tended to be greater than in cells cultivated over a pH range of 0.3-1.1 and a temperature range of 53-63°C. These results suggest that the growth phase, the pH of growth medium, and incubation temperature are all important factors that shape the composition of tetraether lipids in Picrophilus. The similarity in enrichment of GDGTs with more rings in cultures undergoing nutrient, pH, and thermal stress points to GDGT cyclization as a generalized physiological response to stress in this taxon.

19.
Curr Opin Biotechnol ; 13(1): 25-30, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11849954

RESUMEN

Lipid biomarkers are specific compounds that are characteristic of certain groups or species of microorganisms. The use of natural or labeled carbon isotopes of lipid biomarkers has enabled a better understanding of carbon flow pathways at the molecular level. Recent advances include, but are not limited to, the elucidation of mechanisms of anaerobic methane oxidation mediated by syntrophic sulfate-reducing bacteria and Archaea, linking microbial populations with specific microbial processes or bacterial transport mechanisms in natural or contaminated environments, and elucidation of the biosynthetic pathways of cellular material.


Asunto(s)
Biodegradación Ambiental , Radioisótopos de Carbono , Microbiología Ambiental , Lípidos/análisis , Archaea/metabolismo , Bacterias/metabolismo , Biomarcadores , Metano/metabolismo , Azufre/metabolismo
20.
Front Microbiol ; 6: 1108, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528260

RESUMEN

Marine Group (MG) I (currently known as Thaumarchaeota) and MG II Archaea were first reported over two decades ago. While significant progress has been made on MG I microbiology and ecology, the progress on MG II has been noticeably slower. The common understanding is that while MG I mainly function as chemolithoautotrophs and occur predominantly in the deep ocean, MG II reside mostly in the photic zone and live heterotrophically. Studies to date have shown that MG II are abundant in the marine aquatic environment and display great seasonal and spatial variation and phylogenetic diversity. They also show unique patterns of organic carbon degradation and their energy requirements may be augmented by light in the photic zone. However, no pure culture of MG II has been obtained and thus their precise ecological role remains elusive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA