Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7896): 229-233, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140383

RESUMEN

Ultracold assembly of diatomic molecules has enabled great advances in controlled chemistry, ultracold chemical physics and quantum simulation with molecules1-3. Extending the ultracold association to triatomic molecules will offer many new research opportunities and challenges in these fields. A possible approach is to form triatomic molecules in a mixture of ultracold atoms and diatomic molecules by using a Feshbach resonance between them4,5. Although ultracold atom-diatomic-molecule Feshbach resonances have been observed recently6,7, using these resonances to form triatomic molecules remains challenging. Here we report on evidence of the association of triatomic molecules near the Feshbach resonance between 23Na40K molecules in the rovibrational ground state and 40K atoms. We apply a radio-frequency pulse to drive the free-bound transition in ultracold mixtures of 23Na40K and 40K and monitor the loss of 23Na40K molecules. The association of triatomic molecules manifests itself as an additional loss feature in the radio-frequency spectra, which can be distinguished from the atomic loss feature. The observation that the distance between the association feature and the atomic transition changes with the magnetic field provides strong evidence for the formation of triatomic molecules. The binding energy of the triatomic molecules is estimated from the measurements. Our work contributes to the understanding of the complex ultracold atom-molecule Feshbach resonances and may open up an avenue towards the preparation and control of ultracold triatomic molecules.

2.
Opt Express ; 32(2): 2554-2560, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297781

RESUMEN

We investigate the robustness of a modified multi-trench fiber (MTF) design with two gaps numerically. The excellent suppression of high-order modes is demonstrated over a wide range of the gap misalignment and the fundamental mode loss is barely affected even with the 5 dB/m scattering loss in gaps at the modified two-gap MTF for the first time. Therefore, the required fabrication accuracy decreases.

3.
Phys Rev Lett ; 132(13): 133603, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613308

RESUMEN

An integrated quantum light source is increasingly desirable in large-scale quantum information processing. Despite recent remarkable advances, a new material platform is constantly being explored for the fully on-chip integration of quantum light generation, active and passive manipulation, and detection. Here, for the first time, we demonstrate a gallium nitride (GaN) microring based quantum light generation in the telecom C-band, which has potential toward the monolithic integration of quantum light source. In our demonstration, the GaN microring has a free spectral range of 330 GHz and a near-zero anomalous dispersion region of over 100 nm. The generation of energy-time entangled photon pair is demonstrated with a typical raw two-photon interference visibility of 95.5±6.5%, which is further configured to generate a heralded single photon with a typical heralded second-order autocorrelation g_{H}^{(2)}(0) of 0.045±0.001. Our results pave the way for developing a chip-scale quantum photonic circuit.

4.
Opt Express ; 31(26): 42850-42865, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178394

RESUMEN

The co-route optical fibers, comprising both co-cable and co-trench fibers, pose a significant potential risk to network service quality assurance by operators. They are incapable of achieving high-precision recognition and visual state management. In this study, we gathered both static and dynamic optical fiber data using a linewidth tunable light source (LTLS) and introduced a multimodal detection architecture that applies ensemble learning to the collected data. This constitutes what we believe to be the first field trial of concurrent recognition of optical fibers found both in co-cables and co-trenches. To identify co-cable fibers, we employed a double-layer cascaded Random Forest (DLC-RF) model based on the static features of fibers. For co-trench fiber, the dynamic characteristics of fiber vibrations are utilized in combination with multiple independent curve similarity contrast learners for classifying tasks. The proposed architecture is capable of automatically detecting the condition of the optical fiber and actively identifying the same routing segment within the network, eliminating the need for human intervention and enabling the visualization of passive optical fiber resources. Finally, after rigorous testing and validation across 11 sites in a typical urban area, including aggregation and backbone scenarios within the operator's live network environments, we have confirmed that the solution's ability to identify co-routes is accurate, exceeding 95%. This provides strong empirical evidence of its effectiveness.

5.
Opt Lett ; 48(6): 1367-1370, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946929

RESUMEN

With the increasing signal rates of a long-haul backbone dense-wavelength-division-multiplexing (DWDM) transmission system, e.g., from 100 Gb/s to 400 Gb/s and even to 800 Gb/s, optical path impairments simultaneously become more severe. Harmful factors being formerly insignificant become noticeable, e.g., nonlinear phase noise (NPN) on main DWDM channels induced by the cross-phase modulation (XPM) from the low-speed optical supervisory channel (OSC). Field trials show that a greater than 5.13-dB penalty can be observed on the shortest channel of 400G DP-16QAM-PCS over G.654.E links, which greatly degrades the overall transmission performance and limits the maximum reach. In this paper, we propose a dual-OSC structure with opposite signals to compensate for performance degradation caused by OSC-induced NPN. This method involves no extra digital signal processing (DSP), which is not only simple but also applicable for universal signal rates. By experimental demonstration, a 1.32-dB gain in Q (dB) for 200G DP-16QAM transmission over 1618-km G.652.D can be done, almost achieving the same performance as the no OSC case.

6.
Microb Ecol ; 86(4): 2781-2789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37552473

RESUMEN

To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.


Asunto(s)
Nitratos , Tiosulfatos , Océano Pacífico , Clorofila A , Agua de Mar/microbiología , Azufre/metabolismo , Nitrógeno/metabolismo , Carbono , Quitina , Filogenia
7.
Antonie Van Leeuwenhoek ; 116(2): 185-192, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36374402

RESUMEN

The Gram-stain-negative, golden-yellow-colored, non-spore-forming, strictly aerobic, slender rod-shaped bacterial strain, designated KN852T, was isolated from a seamount in the tropical western Pacific. The predominant respiratory quinone was MK-7 and the polar lipid profiles contained phosphatidylethanolamine, one unidentified phospholipid and six unidentified polar lipids. The predominant cellular fatty acids were iso-C15:0, summed feature 3(C16:1ω7c and/or iso-C15:0 2OH), iso-C17:0 3OH and iso-C15:1 G. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain KN852T was affiliated with the family Flammeovirgaceae of the phylum Bacteroidota and formed a distinct lineage. The genomic DNA G + C content of strain KN852T was 34.8%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence presented, strain KN852T represents a novel species of a novel genus of the family Flammeovirgaceae, for which the name Marinigracilibium pacificum gen. nov., sp. nov. is proposed. The type strain is KN852T (= CGMCC 1.17119T = KCTC 72433T).


Asunto(s)
Flavobacteriaceae , Flavobacteriaceae/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Vitamina K 2 , Ácidos Grasos , Bacteroidetes/genética
8.
Angew Chem Int Ed Engl ; 62(44): e202310006, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702354

RESUMEN

The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+ . The well-designed eutectic-based PAN1.2 -SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm-1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2 -SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm-2 , and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6 Co0.2 Mn0.2 O2 pouch cells employing PAN1.2 -SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.

9.
Small ; 18(13): e2106640, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146906

RESUMEN

Lithium-sulfur (Li-S) batteries have been considered as one of the most promising electrochemical energy storage systems because of their high energy density. However, a series of issues severely limit the practical performances of Li-S batteries such as low conductivity, significant volume change, and shuttle effect. The hollow carbon spheres with huge voids and high electrical conductivity are promising as sulfur hosts. Unfortunately, the nonpolar nature of carbon materials cannot prevent the shuttle effect effectively. In this case, the atomic cobalt is introduced to a nitrogen-doped hollow carbon sphere (ACo@HCS) through polymerization and controlled pyrolysis. The atomic cobalt dopants not only act as active sites to restrict the shuttle effect, but also can promote the kinetics of the sulfur redox reactions. ACo@HCS acting as sulfur host exhibits a high discharge capacity (1003 mAh g-1 ) at a 1.0 C rate after 500 cycles, and the corresponding decay rate is as low as 0.002% per cycle. This exciting work paves a new way to design high-performance Li-S batteries.

10.
Chemistry ; 27(54): 13494-13512, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34288172

RESUMEN

For the past few years, a new generation of energy storage systems with large theoretical specific capacity has been urgently needed because of the rapid development of society. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for novel battery systems, since their resurgence at the end of the 20th century Li-S batteries have attracted ever more attention, attributed to their notably high theoretical energy density of 2600 W h kg-1 , which is almost five times larger than that of commercial lithium-ion batteries (LIBs). One of the determining factors in Li-S batteries is how to design/prepare the sulfur cathode. For the sulfur host, the major technical challenge is avoiding the shuttling effect that is caused by soluble polysulfides during the reaction. In past decades, though the sulfur cathode has developed greatly, there are still some enormous challenges to be conquered, such as low utilization of S, rapid decay of capacity, and poor cycle life. This article spotlights the recent progress and foremost findings in improving the performance of Li-S batteries by employing multifunctional metal phosphides as host materials. The current state of development of the sulfur electrode of Li-S batteries is summarized by emphasizing the relationship between the essential properties of metal phosphide-based hybrid nanomaterials, the chemical reaction with lithium polysulfides and the latter's influence on electrochemical performance. Finally, trends in the development and practical application of Li-S batteries are also pointed out.

11.
Appl Microbiol Biotechnol ; 105(7): 2967-2977, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33687503

RESUMEN

Lignin bio-valorization is an emerging field of applied biotechnology and has not yet been studied at low temperatures. Paraburkholderia aromaticivorans AR20-38 was examined for its potential to degrade six selected lignin monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, vanillic acid, benzoic acid) from different upper funneling aromatic pathways. The strain degraded four of these compounds at 10°C, 20°C, and 30°C; syringic acid and vanillic acid were not utilized as sole carbon source. The degradation of 5 mM and 10 mM ferulic acid was accompanied by the stable accumulation of high amounts of the value-added product vanillic acid (85-89% molar yield; 760 and 1540 mg l-1, respectively) over the whole temperature range tested. The presence of essential genes required for reactions in the upper funneling pathways was confirmed in the genome. This is the first report on biodegradation of lignin monomers and the stable vanillic acid production at low and moderate temperatures by P. aromaticivorans. KEY POINTS: • Paraburkholderia aromaticivorans AR20-38 successfully degrades four lignin monomers. • Successful degradation study at low (10°C) and moderate temperatures (20-30°C). • Biotechnological value: high yield of vanillic acid produced from ferulic acid.


Asunto(s)
Lignina , Ácido Vanílico , Burkholderiaceae , Ácidos Cumáricos , Bosques , Suelo
12.
Antonie Van Leeuwenhoek ; 114(12): 2083-2090, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34550493

RESUMEN

The Gram-stain-negative, strictly aerobic, curved-to-spiral rod-shaped bacterial strain, designated KN72T, was isolated from the Caroline Seamounts in the Pacific Ocean. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain KN72T was a member of the family Rhodospirillaceae and formed a distinct lineage. Strain KN72T contained ubiquinone-10 as the major respiratory quinone. The polar lipid profiles contained phosphatidylethanolamine, phosphatidylglycerol, one aminolipid and three phospholipids. The predominant cellular fatty acids were C16:0 and summed feature 8 (comprising C18:1ω7c/C18:1ω6c). The strain KN72T displayed highest 16S rRNA gene sequence similarities with Hwanghaeella grinnelliae Gri0909T (92.3%), Marivibrio halodurans ZB80T (91.0%) and Aestuariispira insulae AH-MY2T (90.1%). The DNA G+C content of strain KN72T was 61.1%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence presented, strain KN72T represents a novel species of a novel genus of the family Rhodospirillaceae, for which the name Pacificispira spongiicola gen. nov., sp. nov. is proposed. The type strain is KN72T (= CGMCC 1.17142T = KCTC 72429T).


Asunto(s)
Nitratos , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Rhodospirillaceae , Análisis de Secuencia de ADN
13.
Antonie Van Leeuwenhoek ; 114(9): 1399-1406, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34251527

RESUMEN

Two Gram-stain-positive, facultatively anaerobic, rod-shaped bacterial strains, S126T and S82T, were isolated from coastal algae of China. Strains S126T and S82T are halotolerant and could grow in the presence of 0-13% NaCl and 0-14% NaCl, respectively. The two strains shared 98.9% 16S rRNA gene sequence similarity with each other and 93.4-99.8% similarity with type strains of Exiguobacterium species. The major fatty acids (> 10%) of strains S126T and S82T were iso-C17:0, iso-C13:0, anteiso-C13:0 and iso-C15:0. The predominant quinones of strains S126T and S82T were MK-7 and MK-8. The polar lipid profiles of strain S126T and S82T contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cell-wall peptidoglycans of both strains S126T and S82T were of the A3α L-Lys-Gly type. The average nucleotide identity (ANI) and average nucleotide index (AAI) between strains S126T and S82T and type strains of Exiguobacterium species were all below the thresholds to discriminate bacterial species, indicating that they constitute two novel species in the genus Exiguobacterium. Based on polyphasic taxonomy characterization and genomic aspects, the names Exiguobacterium algae sp. nov. and Exiguobacterium qingdaonense sp. nov. are proposed for the two novel species, with type strains being S126T (= CGMCC 1.17116T = KCTC 43079 T) and S82T (= CGMCC 1.17115T = KCTC 43078T), respectively.


Asunto(s)
Exiguobacterium , Fosfolípidos , Bacterias , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Antonie Van Leeuwenhoek ; 114(3): 303-311, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33548023

RESUMEN

The Gram-stain-negative, aerobic, ovoid or rod-shaped bacterial strain, designated KN286T, was isolated from seawater of tropical western Pacific. Growth occurred between 15 and 40 °C (optimally at 30-35 °C), pH 6-9 (optimally at 7.0) and in the presence of 0.5-5.0% (w/v) NaCl (optimally between 2.0 and 3.0%). Strain KN286T contained Q-10 as the major respiratory quinone. The polar lipid profile contained phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, three phospholipids, three glycolipids, and three unidentified polar lipids. The predominant cellular fatty acid was summed feature 8 (composed of C18:1ω7c and/or C18:1ω6c). Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain KN286T was a member of the family Rhodobacteraceae and formed a distinct lineage. Strain KN286T has a genome size of 3.25 Mbp and a G + C content of 65.0 mol%. It encoded with some genes for carbohydrate-active enzymes, such as GH20 (Glycoside Hydrolase Family 20) and PL1 (Polysaccharide Lyase Family 1) and did not encode with a set of genes for reduction of nitrate to nitrite (nitrate reductase gamma subunit, respiratory nitrate reductase alpha N-terminal and respiratory nitrate reductase beta C-terminal). Based on phylogenetic analyses with single-copy orthologous clusters, low isDDH value (19.6%), low ANI (72.4%) and low AAI (65.7%) results, differential chemotaxonomic and physiological properties, strain KN286T represents a novel species of a novel genus of the family Rhodobacteraceae, for which the name Oceanomicrobium pacificus gen. nov., sp. nov. is proposed. The type strain of Oceanomicrobium pacificus is KN286T (=CGMCC 1.17118T = KCTC 72430T).


Asunto(s)
Rhodobacteraceae , Ubiquinona , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética , Agua de Mar , Análisis de Secuencia de ADN
15.
Curr Microbiol ; 78(5): 2136-2142, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33811267

RESUMEN

A Gram-stain-positive, yellow, aerobic, slender rod-shaped bacterial strain, designated KN1116T, was isolated from a deep-sea seamount. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain KN1116T was related to the genus Chryseoglobus and had highest 16S rRNA gene sequence identity with Chryseoglobus frigidaquae CW1T (98.5%). The predominant cellular fatty acids were anteiso-C15:0 and iso-C16:0. The quinone system for strain KN1116T comprised menaquinone MK-12, MK-11, MK-10 and MK-13. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, six unknown glycolipids, two unidentified phospholipids and one unknown polar lipid. The cell-wall peptidoglycan of strain KN1116T was of the type B1ß, containing 2,4-diaminobutyric acid as the diamino acid. Genome sequencing revealed the strain KN1116T has a genome size of 2.7 Mbp and a G+C content of 69.4 mol%. Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strain KN1116T represents a novel species of a novel genus of the family Microbacteriaceae, for which the name Marinisubtilis pacificus gen. nov., sp. nov. is proposed. The type strain of Marinisubtilis pacificus is KN1116T (=CGMCC 1.17143T =KCTC 49299T).


Asunto(s)
Actinomycetales , Actinobacteria , Actinomycetales/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2
16.
Small ; 16(7): e1906634, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31967721

RESUMEN

Lithium-sulfur batteries (LSBs) are considered as one of the best candidates for novel rechargeable batteries due to their high energy densities and abundant required materials. However, the poor conductivity and large volume expansion of sulfur and the "shuttle effect" of lithium polysulfides (LPSs) have significantly hindered the development and successful commercialization of LSBs. Bean-like B,N codoped carbon nanotubes loaded with Co nanoparticles (Co@BNTs), which can act as advanced sulfur hosts for the novel LSB cathode, are fabricated. Uniform graphitic nanotubes improve the conductivity of the electrode and load more electroactive sulfur and buffer volume expansion during the electrochemical reaction. In addition, loaded Co nanoparticles and codoped B,N sites can significantly suppress the "shuttle effect" of LPSs with strong chemical interaction. It is established that the Co nanoparticles and codoped B,N can provide more active sites to catalyze the redox reaction of sulfur cathode. This stable Co@BNTs-S cathode displays an exceptional electrochemical performance (1160 mA h g-1 after 200 cycles at 0.1 C) and outstanding stable cycle performance (1008 mA h g-1 after 400 cycles at 1.0 C with an extremely low attenuation rate of 0.038% per cycle).

17.
Chemistry ; 26(35): 7747-7766, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32086844

RESUMEN

Sodium-ion batteries (SIBs) have attracted much attention due to their abundance, easy accessibility, and low cost. All of these advantages make them potential candidates for large-scale energy storage. The P2-type layered transition-metal oxides (Nax TMO2 ; TM=Mn, Co, Ni, Ti, Fe, V, Cr, and a mixture of multiple elements) exhibit good Na+ ion conductivity and structural stability, which make them an excellent choice for the cathode materials of SIBs. Herein, the structural evolution, anionic redox reaction, some challenges, and recent progress of Nax TMO2 cathodes for SIBs are reviewed and summarized. Moreover, a detailed understanding of the relationship of chemical components, structures, phase compositions, and electrochemical performance is presented. This Review aims to provide a reference for the development of P2-type layered transition-metal oxide cathode materials for SIBs.

18.
Chemistry ; 26(64): 14708-14714, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-32748981

RESUMEN

Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3 O4 @C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3 O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+ /electrons transportation and electrolyte penetration. This novel structure endows the Fe3 O4 @C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g-1 up to 100 cycles at 0.5 A g-1 ) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g-1 at 0.15, 0.3, 0.75, and 1.5 A g-1 , respectively). Fe3 O4 @C nanotube arrays still achieve a capacity of 665 mA h g-1 after 50 cycles at 0.1 A g-1 in Fe3 O4 @C//LiCoO2 full cells.

19.
Chemistry ; 26(8): 1720-1736, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31631424

RESUMEN

Conventional lithium-ion batteries, with flammable organic liquid electrolytes, have serious safety problems, which greatly limit their application. All-solid-state batteries (ASSBs) have received extensive attention from large-scale energy-storage fields, such as electric vehicles (EVs) and intelligent power grids, due to their benefits in safety, energy density, and thermostability. As the key component of ASSBs, solid electrolytes determine the properties of ASSBs. In past decades, various kinds of solid electrolytes, such as polymers and inorganic electrolytes, have been explored. Among these candidates, organic-inorganic composite solid electrolytes (CSEs) that integrate the advantages of these two different electrolytes have been regarded as promising electrolytes for high-performance ASSBs, and extensive studies have been carried out. Herein, recent progress in organic-inorganic CSEs is summarized in terms of the inorganic component, electrochemical performance, effects of the inorganic ceramic nanostructure, and ionic conducting mechanism. Finally, the main challenges and perspectives of organic-inorganic CSEs are highlighted for future development.

20.
Int J Syst Evol Microbiol ; 70(8): 4569-4575, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32634089

RESUMEN

The Gram-stain-negative, orange-pigmented, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated TP-CH-4T, was isolated from a seamount near the Yap Trench in the tropical western Pacific. The optimal growth conditions were determined to be at pH 7-8, 25-30 °C and in the presence of 2 % (w/v) NaCl. The major respiratory quinone was MK-6. The polar lipid profile contained phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids and three unidentified polar lipids. The predominant cellular fatty acids were iso-C15 : 0 and summed feature 1 (composed of C13 : 03-OH and/or iso-C15 : 1H). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain TP-CH-4T was a member of the family Flavobacteriaceae and formed a distinct lineage. Strain TP-CH-4T displayed highest sequence similarities to Pseudozobellia thermophila KMM 3531T (95.1 %) and Flagellimonas flava A11T (93.9 %). Genome sequencing revealed the strain TP-CH-4T has a genome size of 4.5 Mbp and a G+C content of 44.5 mol%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence, strain TP-CH-4T represents a novel species of a novel genus of the family Flavobacteriaceae, for which the name Pelagihabitans pacificus gen. nov., sp. nov. is proposed. The type strain of Pelagihabitans pacificus is TP-CH-4T (=CGMCC 1.17120T=KCTC 72434T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/aislamiento & purificación , Océano Pacífico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA