RESUMEN
The advancement of acceptors plays a pivotal role in determining photovoltaic performance. While previous efforts have focused on optimizing acceptor-donor-acceptor1-donor-acceptor (A-DA1-D-A)-typed acceptors by adjusting side chains, end groups, and conjugated extension of the electron-deficient central A1 unit, the systematic exploration of the impact of peripheral aryl substitutions, particularly with different electron groups, on the A1 unit and its influence on device performance is still lacking. In this study, three novel acceptors - QxTh, QxPh, and QxPy - with distinct substitutions on the quinoxaline (Qx) are designed and synthesized. Density functional theory (DFT) analyses reveal that QxPh, featuring a phenyl-substituted Qx, exhibits the smallest molecular binding energies and a tightest π···π stacking distance. Consequently, the PM6:QxPh device demonstrates a better power conversion efficiency (PCE) of 17.1% compared to the blends incorporating QxTh (16.4%) and QxPy (15.7%). This enhancement is primarily attributed to suppressed charge recombination, improved charge extraction, and more favorable molecular stacking and morphology. Importantly, introducing QxPh as a guest acceptor into the PM6:BTP-eC9 binary system yields an outstanding PCE of 19.5%, indicating the substantial potential of QxPh in advancing ternary device performance. The work provides deep insights into the expansion of high-performance organic photovoltaic materials through peripheral aryl substitution strategy.
RESUMEN
A sulphur-oxidizing bacterium, designated strain SCUT-2T, was isolated from freshwater sediment collected from the Pearl River in Guangzhou, PR China. This strain was an obligate chemolithoautotroph, utilizing reduced sulphur compounds (elemental sulphur, thiosulphate, tetrathionate and sulphite) as the electron donor. Growth of strain SCUT-2T was observed at 20-40 â (optimum at 30 °C), pH 5.0-9.0 (optimum at 6.0), and NaCl concentration range of 0-9 g L-1 (optimum at 1 g L-1). The major cellular fatty acids were C16:0 ω7c and cyclo-C17:0. The DNA G + C content of the complete genome sequence was 66.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain SCUT-2T formed a lineage within the genus Thiobacillus, showing gene sequence identity of 98.0% with its closest relative Thiobacillus thioparus THI 115. The genome of strain SCUT-2T contains multiple genes encoding sulphur-oxidizing enzymes that catalyse the oxidation of reduced sulphur compounds, partial genes that are necessary for denitrification, and the genes encoding cbb3-type cytochrome c oxidase, aa3-type cytochrome c oxidase and bd-type quinol oxidase. Facultative anaerobic growth occurs when using nitrate as the electron acceptor and thiosulphate as the electron donor. On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic analysis, strain SCUT-2T (= GDMCC 1.4108T = JCM 39443T) is deemed to represent a novel Thiobacillus species, for which we propose the name Thiobacillus sedimenti sp. nov.
Asunto(s)
Composición de Base , ADN Bacteriano , Agua Dulce , Sedimentos Geológicos , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S , Azufre , Thiobacillus , Sedimentos Geológicos/microbiología , Azufre/metabolismo , ARN Ribosómico 16S/genética , Thiobacillus/genética , Thiobacillus/metabolismo , Thiobacillus/clasificación , Agua Dulce/microbiología , ADN Bacteriano/genética , China , Ácidos Grasos , Genoma Bacteriano , Técnicas de Tipificación Bacteriana , Crecimiento Quimioautotrófico , Análisis de Secuencia de ADNRESUMEN
The difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs). Herein, we synthesized two ffBT-based copolymers, PffBT-2T and PffBT-4T, incorporating different π-bridges to modulate intermolecular interactions and aggregation tendencies. Experimental and theoretical studies revealed that PffBT-4T exhibits reduced electrostatic potential differences and miscibility with L8-BO compared to PffBT-2T. This facilitates improved phase separation in the active layer, leading to enhanced molecular packing and optimized morphology. Moreover, PffBT-4T demonstrated a prolonged nucleation and crystal growth process, leading to enhanced molecular packing and optimized morphology. Consequently, PffBT-4T-based devices achieved a remarkable PCE of 17.5 %, setting a new record for ffBT-based photovoltaic polymers. Our findings underscore the importance of conjugate backbone modulation in controlling aggregation behavior and film formation kinetics, providing valuable insights for the design of high-performance polymer donors in organic photovoltaics.
RESUMEN
All-polymer solar cells (all-PSCs) present compelling advantages for commercial applications, including mechanical durability and optical and thermal stability. However, progress in developing high-performance polymer donors has trailed behind the emergence of excellent polymer acceptors. In this study, we report a new electron-deficient arene, fluorinated bithiophene imide (F-BTI) and its polymer donor SA1, in which two fluorine atoms are introduced at the outer ß-positions in the thiophene rings of BTI to fine-tune the energy levels and aggregation of the resulting polymers. SA1 exhibits a deep HOMO level of -5.51â eV, a wide bandgap of 1.81â eV and suitable miscibility with the polymer acceptor. Polymer chains incorporating F-BTI result in a highly ordered π-π stacking and favorable phase-separated morphology within the all-polymer active layer. Thus, SA1 : PY-IT-based all-PSCs exhibit an efficiency of 16.31 % with excellent stability, which is further enhanced to a record value of 19.33 % (certified: 19.17 %) by constructing ternary device. This work demonstrates that F-BTI offers an effective route for developing new polymer materials with improved optoelectronic properties, and the emergence of F-BTI will change the scenario in terms of developing polymer donor for high-performance and stable all-PSCs.
RESUMEN
Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.
Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Genómica , Myoviridae/genética , Especificidad del Huésped , Bacterias , Genoma Viral/genéticaRESUMEN
In recent decades, terraces abandonment has been prevalent in the hilly areas of China. Soil fungi play an important role in clarifying soil ecosystematic feedback after ancient rice terraces abandonment, but how their community composition and function shift remains unclear. Soil profiles of 0-120 cm were excavated in ancient rice terraces, dry land, and forest land (formed from ancient rice terraces abandonment), respectively. The 13C NMR and high-throughput sequencing were used to determine soil organic carbon chemical groups and fungal community, respectively, and FUNGuild was used to predict functional groups. The results showed that the soil fungal community changed from Ascomycota to Basidiomycota after ancient rice terraces abandonment. The trophic modes of dry land and forest land were transformed into pathotrophic fungi and symbiotrophic fungi, respectively. The number of nodes and edges of fungal co-occurrence networks increased by 83.8% and 644.1% in dry land, and 81.3% and 431.2% in forest land, respectively. Moreover, soil nutrients (especially DOC, TN, and TP) can more affected the variation of fungal community composition and function than soil organic carbon chemical groups. These findings indicate that soil fungal community shifts in different directions in response to ancient rice terraces abandonment, which is related to the adaptive strategies for environmental changes and may be more conducive to the acquisition and turnover of soil nutrients.
Asunto(s)
Micobioma , Oryza , Suelo/química , Carbono , Hongos , Nutrientes , China , Microbiología del SueloRESUMEN
The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.
RESUMEN
OBJECTIVE: To analyze the clinical and genetic characteristics of three Chinese pedigrees affected with Citrullinemia type I (CTLN1). METHODS: Three children diagnosed at the Children's Hospital Affiliated to Shandong University from 2017 to 2020 were selected as the study subjects. Genomic DNA was extracted from peripheral blood samples of the probands and their parents. Next generation sequencing (NGS) was carried out to detect pathological variants of the probands. Sanger sequencing was used for validating the candidate variant among the pedigrees. RESULTS: The probands have respectively carried compound heterozygous variants of c.207_209delGGA and c.1168G>A, c.349G>A and c.364-1G>A, c.470G>A and c.970G>A of the ASS1 gene, which were respectively inherited from their parents. CONCLUSION: The newly discovered c.207_209delGGA and c.364-1G>A variants have enriched the mutational spectrum of the ASS1 gene. And the mutation spectrum of Chinese CTLN1 patients is heterogeneous.
Asunto(s)
Argininosuccinato Sintasa , Citrulinemia , Niño , Humanos , Argininosuccinato Sintasa/genética , Citrulinemia/genética , Pueblos del Este de Asia , Mutación , LinajeRESUMEN
The spread of multidrug-resistant Klebsiella pneumoniae (MDR-KP) has become an emerging threat as a result of the overuse of antibiotics. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infection compared with antibiotic therapy. In this research, a lytic phage BUCT610 was isolated from hospital sewage. The assembled genome of BUCT610 was 46,774 bp in length, with a GC content of 48%. A total of 83 open reading frames (ORFs) and no virulence or antimicrobial resistance genes were annotated in the BUCT610 genome. Comparative genomics and phylogenetic analyses showed that BUCT610 was most closely linked with the Vibrio phage pYD38-A and shared 69% homology. In addition, bacteriophage BUCT610 exhibited excellent thermal stability (4-75 °C) and broad pH tolerance (pH 3-12) in the stability test. In vivo investigation results showed that BUCT610 significantly increased the survival rate of Klebsiella pneumonia-infected Galleria mellonella larvae from 13.33% to 83.33% within 72 h. In conclusion, these findings indicate that phage BUCT610 holds great promise as an alternative agent with excellent stability for the treatment of MDR-KP infection.
Asunto(s)
Bacteriófagos , Mariposas Nocturnas , Animales , Antibacterianos/farmacología , Genómica , Klebsiella pneumoniae/genética , Larva/genética , Mariposas Nocturnas/genética , FilogeniaRESUMEN
In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.
RESUMEN
All-polymer solar cells (All-PSCs), whose electron donor and acceptors are both polymeric materials, have attracted great research attention in the past few years. However, most all-PSC devices with top-of-the-line efficiencies are processed from chloroform. In this work, we apply the sequential processing (SqP) method to fabricate All-PSCs from an aromatic hydrocarbon solvent, toluene, and obtain efficiencies up to 17.0%. By conducting a series of characterizations on our films and devices, we demonstrate that the preparation of SqP devices using toluene can effectively reduce carrier recombination, enhance carrier mobility and promote the fill factor of the device.
RESUMEN
Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.
RESUMEN
The spatiotemporal dislocation of urbanization and ecological construction may lead to differences in the spatiotemporal pattern and matching of the ecosystem service supply and demand, which are significantly important in altering the ecosystem service supply and demand equilibrium. This study quantified and mapped the supply and demand of carbon sequestration services in the Xiangjiang River Basin (XRB) from 1990 to 2015 using the InVEST and population distribution models and identified the spatial distribution characteristics and changes in the supply and demand relationship on the sub-basin scale using the spatial autocorrelation method and Z-scores. The results show that the expansion of land urbanization greater than 50% was concentrated in the midstream and downstream, while the ecological construction was mainly distributed in the upstream. On the whole-basin scale, the supply of carbon sequestration services slightly decreased by 21.62%, while the demand sharply increased by 376.86%. The carbon sequestration services supply-demand ratio (CSDR) reduced from 0.16 (1990) to -0.03 (2015). This meant that the status of the supply and demand in the XRB had changed from oversupply to overdemand, and this tide turned in 2005 (-0.01). Furthermore, the spatial distribution pattern of the sub-basins' CSDR in the upstream was the High-High cluster, while it was the Low-Low cluster in the downstream. These results revealed the high spatial distribution consistency between the CSDR and urbanization and ecological construction. The slight increase in the carbon sinks caused by the ecological construction in the upstream could not offset the rapidly increased carbon emissions from the downstream for urbanization. Meanwhile, the lack of ecological concern during the urbanization process had led to a persistent reduction in the carbon sinks in the downstream, which also exacerbated the disequilibrium of the ecosystem service supply and demand in the XRB. Consequently, this study suggests that the scale and speed of the urbanization of land should be reasonably controlled and that the ecological construction in rapid urbanization regions should be strengthened to meet the demand for ecosystem services.
Asunto(s)
Ecosistema , Urbanización , Carbono , Secuestro de Carbono , China , Conservación de los Recursos Naturales , RíosRESUMEN
A clear quantification and spatial mapping between supply and demand of water provision service in relation to climate change and urban expansion can provide some guidance to water resources management. Nevertheless, so far, most researches ignored the dynamic changes and influences of supply-demand coupling correlations. In this study, water yield and water demand were quantified and mapped in the Xiangjiang River Basin (XRB) from 2000 to 2018 by using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) and water-demand models, then the spatial distribution characteristics and their matching relationship were identified by using the univariate local autocorrelation analysis and the common logarithm of water supply-demand ratio (WSDR). With that, the contributions of climate and socio-economic factors to the above-mentioned changes were explored by using geographic detector. Results showed that the annual water yield increased by 20.20% in 2000-2015 and decreased by 33.92% in 2015-2018 affected by precipitation and land use changes; Changsha-Zhuzhou- Xiangtan urban agglomeration (CZX) and Southwest of Yongzhou were the high value areas of water yield (>338 m3/hm2). Due to the urban expansion, the water demand increased by 40.50% from 2000 to 2005 and decreased by 36.39% after 2005; From 2000 to 2018, high value areas of water demand (>53566 m3/hm2) mainly appeared in midstream and downstream with high urbanization level, dense population and developed industry. Under the joint action of precipitation (prep) and urban expansion, the overall state of supply and demand in the upper reaches was surplus, and more than 90% of the regions in midstream and downstream were at the middle and high level of supply shortage, especially in Hengyang and Chenzhou. Consequently, the increasing needs of human beings should be emphasized from the overall perspective of the basin, the growth rate of construction land and the necessary green infrastructure should be controlled reasonably and configured for achieving win-win goals of coordinating environmental protection and urban development.
Asunto(s)
Ecosistema , Agua , China , Conservación de los Recursos Naturales , Humanos , Ríos , Urbanización , Abastecimiento de AguaRESUMEN
OBJECTIVE: To explore the genetic basis for a child featuring global developmental delay. METHODS: DNA was extracted from peripheral blood sample taken from the patient and subjected to whole exome sequencing. Suspected variants were verified by Sanger sequencing of his family members. RESULTS: A heterozygous c.239T>C (p.Ile80Thr) variant of the GNB1 gene was detected in the proband, which was a verified to be de novo in origin. CONCLUSION: The heterozygous c.239T>C (p.Ile80Thr) variant of the GNB1 gene probably underlay the disease in this child.
Asunto(s)
Artrogriposis , Subunidades beta de la Proteína de Unión al GTP , Discapacidad Intelectual , Niño , Familia , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Secuenciación del ExomaRESUMEN
The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within the past five years, there have been over 100 nonfullerene acceptor molecules synthesized, and the power conversion efficiency of nonfullerene organic solar cells has increased dramatically, from â¼2% in 2012 to >13% in 2017. This review summarizes this progress, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances. We also provide perspectives from a device point of view, wherein topics including ternary blend device, multijunction device, device stability, active layer morphology, and device physics are discussed.
RESUMEN
Methylmalonic acidemia (MMA) is a typical type of organic acidemia caused by defects in methylmalonyl-CoA mutase or adenosyl-cobalamin synthesis. Hydrocephalus (HC), results from an imbalance between production and absorption of cerebrospinal fluid (CSF), causeing enlarged cerebral ventricles and increased intracranial pressure, is a condition that requires urgent clinical decision-making. MMA without treatment could result in brain damage. However, HC in MMA was rarely reported. In this study, 147 MMA were identified from 9117 high risk children by gas chromatography mass spectrometry (GC/MS) for organic acidurias screening in urine samples and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for amino acids detection in blood samples. Totally 10 cases with MMA and HC were determined by brain MRI/CT, as well as gene mutation testing either by high throughput sequencing or Sanger sequencing. Besides, homocysteine was also analyzed for the 10 MMA with HC. Out of them, 9 cases carry out compound heterozygous mutations or homozygous mutation in MMACHC gene, and 1 case has MUTmutation. The mutation c.609G > A in MMACHC was the most common in the cbl type patients. Although MMA has a high incidence in Shandong province of China, especially cblC type. All of the 10 patients were not correctly diagnosed before developing HC. As a result, when a child develops progressive and refractory HC, the screening for inherited metabolic diseases should be immediately conducted.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico por imagen , Errores Innatos del Metabolismo de los Aminoácidos/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Encéfalo/patología , Niño , Preescolar , China , Cromatografía Liquida/métodos , Femenino , Humanos , Lactante , Masculino , Fenotipo , Proteínas Proto-Oncogénicas c-cbl/genéticaRESUMEN
OBJECTIVE: To delineate the clinical and genetic features of a Chinese boy suspected for Niemann-Pick disease type C. METHODS: The patient underwent clinical examination and was subjected to next generation sequencing. Suspected mutations were validated by Sanger sequencing. Potential impact of the novel mutation was predicted by SIFT, PolyPhen-2 and MutationTaster software. RESULTS: The child has featured hepatosplenomegaly, increased direct bilirubin, jaundiced skin and liver damage. DNA sequencing showed that he has carried compound heterozygous mutations of NPC1 gene, namely c.2728GG (p.P90R), which were inherited from his mother and father, respectively. The c.2728G>A (p.G910S) mutation was previously reported, while the c.269C>G (p.P90R) was a novel mutation. CONCLUSION: The child has suffered from Niemann-Pick disease type C due to mutations of NPC1 gene. Above finding has enriched the spectrum of NPC1 mutations and provided a basis for genetic counseling and prenatal diagnosis.
Asunto(s)
Proteínas Portadoras/genética , Glicoproteínas de Membrana/genética , Enfermedad de Niemann-Pick Tipo C , Pueblo Asiatico , Bilirrubina , Niño , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Mutación , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genéticaRESUMEN
Bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted intensive research attention over the past two decades owing to their unique advantages including mechanical flexibility, light weight, large area, and low-cost fabrications. To date, OSC devices have achieved power conversion efficiencies (PCEs) exceeding 12%. Much of the progress was enabled by the development of high-performance donor polymers with favorable morphological, electronic, and optical properties. A key problem in morphology control of OSCs is the trade-off between achieving small domain size and high polymer crystallinity, which is especially important for the realization of efficient thick-film devices with high fill factors. For example, the thickness of OSC blends containing state-of-the-art PTB7 family donor polymers are restricted to â¼100 nm due to their relatively low hole mobility and impure polymer domains. To further improve the device performance and promote commercialization of OSCs, there is a strong demand for the design of new donor polymers that can achieve an optimal blend morphology containing highly crystalline yet reasonably small domains. In this Account, we highlight recent progress on a new family of conjugated polymers with strong temperature-dependent aggregation (TDA) property. These polymers are mostly disaggregated and can be easily dissolved in solution at high temperatures, yet they can strongly aggregate when the solution is cooled to room temperature. This unique aggregation property allows us to control the disorder-order transition of the polymer during solution processing. By preheating the solution to high temperature (â¼100 °C), the polymer chains are mostly disaggregated before spin coating; as the temperature of the solution drops during the spin coating process, the polymer can strongly aggregate and form crystalline domains yet that are not excessivelylarge. The overall blend morphology can be optimized by various processing conditions (e.g., temperature, spin-rates, concentration, etc.). This well-controlled and near-optimal BHJ morphology produced over a dozen cases of efficient OSCs with an active layer nearly 300 nm thick that can still achieve high FFs (70-77%) and efficiencies (10-11.7%). By studying the structure-property relationships of the donor polymers, we show that the second position branched alkyl chains and the fluorination on the polymer backbone are two key structural features that enable the strong TDA property. Our comparative studies also show that the TDA polymer family can be used to match with non-fullerene acceptors yielding OSCs with low voltage losses. The key difference between the empirical matching rules for fullerene and non-fullerene OSCs is that TDA polymers with slightly reduced crystallinity appear to match better with small molecular acceptors and yield higher OSC performances.
RESUMEN
To achieve efficient non-fullerene organic solar cells, it is important to reduce the voltage loss from the optical bandgap to the open-circuit voltage of the cell. Here we report a highly efficient non-fullerene organic solar cell with a high open-circuit voltage of 1.08 V and a small voltage loss of 0.55 V. The high performance was enabled by a novel wide-bandgap (2.05 eV) donor polymer paired with a narrow-bandgap (1.63 eV) small-molecular acceptor (SMA). Our morphology characterizations show that both the polymer and the SMA can maintain high crystallinity in the blend film, resulting in crystalline and small domains. As a result, our non-fullerene organic solar cells realize an efficiency of 11.6%, which is the best performance for a non-fullerene organic solar cell with such a small voltage loss.