RESUMEN
BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.
Asunto(s)
Bleomicina , ADN Glicosilasas , Modelos Animales de Enfermedad , Macrófagos , Mitofagia , Proteínas Quinasas , Fibrosis Pulmonar , Animales , Mitofagia/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Ratones , Macrófagos/metabolismo , Proteínas Quinasas/metabolismo , Bleomicina/efectos adversos , Masculino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Activación de Macrófagos , Humanos , QuinazolinonasRESUMEN
Estrogen receptor α (ERα) is an important biomarker in breast cancer diagnosis and treatment. Sensitive and accurate detection of ERα protein expression is crucial in guiding selection of an appropriate therapeutic strategy to improve the effectiveness and prognosis of breast cancer treatment. Herein, we report a liquid-gated graphene field-effect transistor (FET) biosensor that enables rapid, sensitive, and label-free detection of the ERα protein by employing a novel drug molecule as a capture probe. The drug molecule was synthesized and subsequently immobilized onto the sensing surface of the fabricated graphene FET, which was able to distinguish the ERα-positive from the ERα-negative protein. The developed sensor not only demonstrated a low detection limit (LOD: 2.62 fM) but also achieved a fast response to ERα protein samples within 30 min. Moreover, depending on the relationship between the change of dirac point and the ERα protein concentrations, the dissociation constant (Kd) was estimated to be 7.35 ± 0.06 pM, indicating that the drug probe-modified graphene FET had a good affinity with ERα protein. The nanosensor was able to analyze ERα proteins from 36 cell samples lysates. These results show that the graphene FET sensor was able to differentiate between ERα-positive and ERα-negative cells, indicating a promising biosensor for the ultrasensitive and rapid detection of ERα protein without antibody labeling.
Asunto(s)
Técnicas Biosensibles , Grafito , Límite de Detección , Receptor alfa de Estrógeno , Transistores Electrónicos , Biomarcadores , Técnicas Biosensibles/métodosRESUMEN
BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatographyâmass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRTâPCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.
Asunto(s)
Antocianinas , Flavonoides , Flores , Hibiscus , Metaboloma , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Hibiscus/genética , Hibiscus/metabolismo , Hibiscus/crecimiento & desarrollo , Flavonoides/metabolismo , Antocianinas/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , ColorRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown etiology. Despite the increasing global incidence and poor prognosis, the exact pathogenic mechanisms remain elusive. Currently, effective therapeutic targets and treatment methods for this disease are still lacking. This study tried to explore the pathogenic mechanisms of IPF. We found elevated expression of SULF1 in lung tissues of IPF patients compared to normal control lung tissues. SULF1 is an enzyme that modifies heparan sulfate chains of heparan sulfate proteoglycans, playing a critical role in biological regulation. However, the effect of SULF1 in pulmonary fibrosis remains incompletely understood. Our study aimed to investigate the impact and mechanisms of SULF1 in fibrosis. METHODS: We collected lung specimens from IPF patients for transcriptome sequencing. Validation of SULF1 expression in IPF patients was performed using Western blotting and RT-qPCR on lung tissues. ELISA experiments were employed to detect SULF1 concentrations in IPF patient plasma and TGF-ß1 levels in cell culture supernatants. We used lentiviral delivery of SULF1 shRNA to knock down SULF1 in HFL1 cells, evaluating its effects on fibroblast secretion, activation, proliferation, migration, and invasion capabilities. Furthermore, we employed Co-Immunoprecipitation (Co-IP) to investigate the regulatory mechanisms involved. RESULTS: Through bioinformatic analysis of IPF transcriptomic sequencing data (HTIPF) and datasets GSE24206, and GSE53845, we identified SULF1 may potentially play a crucial role in IPF. Subsequently, we verified that SULF1 was upregulated in IPF and predominantly increased in fibroblasts. Furthermore, SULF1 expression was induced in HFL1 cells following exposure to TGF-ß1. Knockdown of SULF1 suppressed fibroblast secretion, activation, proliferation, migration, and invasion under both TGF-ß1-driven and non-TGF-ß1-driven conditions. We found that SULF1 catalyzes the release of TGF-ß1 bound to TGFßRIII, thereby activating the TGF-ß1/SMAD pathway to promote fibrosis. Additionally, TGF-ß1 induces SULF1 expression through the TGF-ß1/SMAD pathway, suggesting a potential positive feedback loop between SULF1 and the TGF-ß1/SMAD pathway. CONCLUSIONS: Our findings reveal that SULF1 promotes fibrosis through the TGF-ß1/SMAD pathway in pulmonary fibrosis. Targeting SULF1 may offer a promising therapeutic strategy against IPF.
Asunto(s)
Fibrosis Pulmonar Idiopática , Transducción de Señal , Proteínas Smad , Sulfotransferasas , Factor de Crecimiento Transformador beta1 , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Factor de Crecimiento Transformador beta1/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Proteínas Smad/metabolismo , Pulmón/patología , Pulmón/metabolismo , Masculino , Proliferación Celular , Femenino , Movimiento Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Persona de Mediana Edad , Línea CelularRESUMEN
Polymeric micelle systems for drug delivery, monitor and chemotherapy have gained significant attention, and reductive polymeric micelle systems have become particularly attractive due to their controlled release behavior without additional assistance. However, there are challenges in accurately controlling drug and probe release from the nanoparticles and determining the loading content of drug and probe. To address these issues, we have developed a reduction-responsive Pt(IV) prodrug-based polymeric delivery system that can be dynamically monitored using aggregation-induced emission luminogens (AIE) based bioprobes. These polymeric micelle can self-assemble into nanoparticles and release both bio-active Pt(II) drug and bio-probe upon reduction activation. TPE molecules released in the inner endo/lysosomal microenvironment aggregate and fluoresce upon irradiation, thus allowing real-time tracking of drug biodistribution without additional contrast agents. Advantages of this system include position-specific chemical bond cleavage, control of platinum content, and monitoring of drug reduction and biodistribution.
Asunto(s)
Nanopartículas , Profármacos , Humanos , Profármacos/farmacología , Micelas , Distribución Tisular , Sistemas de Liberación de Medicamentos , Polímeros/química , Nanopartículas/químicaRESUMEN
The photothermal conversion properties of tellurium (Te) nanoparticles have been extensively investigated, rendering them a promising candidate for tumor photothermal therapy. However, there is still room for improvement in the development of efficient Te-based drug delivery systems. Here, Te nanoparticles are mineralized with bioactive molecules within attenuated Salmonella (S-Te), which are subsequently taken up by macrophages (RAW264.7) to construct a double-camouflaged delivery platform (RS-Te). Remarkably, RS-Te retains superior photothermal properties under near-infrared irradiation. The mineralization process eliminates bacterial proliferation potential, thereby mitigating the risk of excessive bacterial growth in vivo. Furthermore, the uptake of bacteria by macrophages not only polarizes them into M1 macrophages to induce an anti-tumor immune response but also circumvents any adverse effects caused by complex antigens on the bacterial surface. The results show that RS-Te can effectively accumulate and retain in tumors. RS-Te-mediated photothermal immunotherapy largely promotes the maturation of dendritic cells and priming of cytotoxic T cells induced by near-infrared laser irradiation. Moreover, RS-Te can switch the activation of macrophages from an immunosuppressive M2 phenotype to a more inflammatory M1 state. The double-camouflaged delivery system may offer highly efficient and safe cancer treatment.
Asunto(s)
Inmunoterapia , Macrófagos , Terapia Fototérmica , Telurio , Telurio/química , Animales , Ratones , Células RAW 264.7 , Inmunoterapia/métodos , Terapia Fototérmica/métodos , Nanopartículas/química , Neoplasias/terapia , Salmonella , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos , Linfocitos T Citotóxicos/inmunología , Células Dendríticas/inmunologíaRESUMEN
Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.
Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Virus de la Diarrea Epidémica Porcina , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Animales , Porcinos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Nanotubos de Carbono/química , Límite de Detección , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Anticuerpos Monoclonales/inmunología , Transistores Electrónicos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/inmunología , Diseño de EquipoRESUMEN
Iron-dependent lipid peroxidation causes ferroptosis, a form of regulated cell death. Crucial steps in the formation of ferroptosis include the accumulation of ferrous ions (Fe2+) and lipid peroxidation, of which are controlled by glutathione peroxidase 4 (GPX4). Its crucial role in stopping the spread of cancer has been shown by numerous studies undertaken in the last ten years. Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. EMT is connected to carcinogenesis, invasiveness, metastasis, and therapeutic resistance in cancer. It is controlled by a range of internal and external signals and changes the phenotype from epithelial to mesenchymal like. Studies have shown that mesenchymal cancer cells tend to be more ferroptotic than their epithelial counterparts. Drug-resistant cancer cells are more easily killed by inducers of ferroptosis when they undergo EMT. Therefore, understanding the interaction between ferroptosis and EMT will help identify novel cancer treatment targets. In-depth discussion is given to the regulation of ferroptosis, the potential application of EMT in the treatment of cancer, and the relationships between ferroptosis, EMT, and signaling pathways associated with tumors. Invasion, metastasis, and inflammation in cancer all include ferroptosis and EMT. The goal of this review is to provide suggestions for future research and practical guidance for applying ferroptosis and EMT in clinical practice.
Asunto(s)
Ferroptosis , Neoplasias , Humanos , Transición Epitelial-Mesenquimal , Neoplasias/tratamiento farmacológico , Carcinogénesis , Células Epiteliales , HierroRESUMEN
Exaggerated airway hyperresponsiveness and inflammation are hallmarks of asthma, and lipopolysaccharide (LPS) exposure is linked to the severity of the disease and steroid resistance. To investigate the mechanisms underlying asthma exacerbation, we established a mouse model of LPS-induced steroid-resistant exacerbation on the background of house dust mite (HDM)-induced asthma to profile the immune cells in lung by using single-cell RNA deep sequencing. Twenty immune subsets were identified by their molecular and functional properties. Specific cell clusters of basophils, type 2 innate lymphoid cells (ILC2), and CD8+ memory T cells were the predominant sources of interleukin (IL)-4 and IL-13 transcripts whose expressions were dexamethasone resistant. Production of IL-13 by these cells was validated by IL-13-reporter mice. Neutralization of IL-13 abolished HDM/LPS-induced airway hyperresponsiveness, airway inflammation, and decreased mucus hypersecretion. Furthermore, using Ingenuity Pathway Analysis systems, we identified canonical pathways and upstream regulators that regulate the activation of basophils, ILC2, and CD8+ memory T cells. Our study provides mechanistic insights and an important reference resource for further understanding of the immune landscape during asthma exacerbation.
Asunto(s)
Asma/inmunología , Interleucina-13/metabolismo , Leucocitos/metabolismo , Pulmón/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Transcriptoma , Animales , Progresión de la Enfermedad , Interleucina-4/metabolismo , Lipopolisacáridos , Ratones Endogámicos BALB C , Pyroglyphidae/inmunología , Análisis de la Célula IndividualRESUMEN
OBJECTIVE: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies. This research examines the sustained clinical effectiveness of DBS of the GPi in individuals diagnosed with CCD. METHODS: The authors report 24 patients (14 women, 10 men) with refractory CCD who underwent DBS of the GPi between 2016 and 2023. The severity and disability of the dystonia were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The BFMDRS scores were collected preoperatively, 6 months postoperatively, and at the most recent follow-up visit. RESULTS: The mean age at onset was 52.0 ± 11.0 years (range 33-71 years) and the mean disease duration was 63.3 ± 73.3 months (range 7-360 months) (values for continuous variables are expressed as the mean ± SD). The mean follow-up period was 37.5 ± 23.5 months (range 6-84 months). The mean total BFMDRS motor scores at the 3 different time points were 13.3 ± 9.4 preoperatively, 5.0 ± 4.7 (55.3% improvement, p < 0.001) at 6 months, and 4.5 ± 3.6 (56.6% improvement, p < 0.001) at last follow-up. The outcomes were deemed poor in 6 individuals. CONCLUSIONS: Inferences drawn from the findings suggest that DBS of the GPi has long-lasting effectiveness and certain limitations in managing refractory CCD. The expected stability of the clinical outcome is not achieved. Patients with specific types of dystonia might consider targets other than GPi for a more precise therapy.
Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Humanos , Estimulación Encefálica Profunda/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Estudios de Seguimiento , Resultado del Tratamiento , Tortícolis/terapia , Trastornos Distónicos/terapiaRESUMEN
RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4â¯h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHRãairway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.
Asunto(s)
Contaminantes Atmosféricos , Linfocitos , Ratones Endogámicos BALB C , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Ratones , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Contaminantes Atmosféricos/toxicidad , Inflamación/inducido químicamente , Eosinófilos/inmunología , Eosinófilos/efectos de los fármacos , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/inducido químicamente , Femenino , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , MasculinoRESUMEN
Through extensive literature review, it has been found that sparse Bayesian learning (SBL) is mainly applied to traditional scalar hydrophones and is rarely applied to vector hydrophones. This article proposes a direction of arrival (DOA) estimation method for vector hydrophones based on SBL (Vector-SBL). Firstly, vector hydrophones capture both sound pressure and particle velocity, enabling the acquisition of multidimensional sound field information. Secondly, SBL accurately reconstructs the received vector signal, addressing challenges like low signal-to-noise ratio (SNR), limited snapshots, and coherent sources. Finally, precise DOA estimation is achieved for multiple sources without prior knowledge of their number. Simulation experiments have shown that compared with the OMP, MUSIC, and CBF algorithms, the proposed method exhibits higher DOA estimation accuracy under conditions of low SNR, small snapshots, multiple sources, and coherent sources. Furthermore, it demonstrates superior resolution when dealing with closely spaced signal sources.
RESUMEN
High electrical conductivity and super high hardness are two sought-after material properties, but both are contradictory because the effective suppression of dislocation movement generally increases the scattering of conducting electrons. Here we synthesized a high-entropy dodecaboride composite (HEDC) with a large number of atomic-scale interlocking layers. It shows a Vickers hardness of 51.2 ± 3.6 GPa under an applied load of 0.49 N and an electrical resistivity of 44.5 µΩ·cm at room temperature. Such HEDC achieves superhardness by inheriting the high intrinsic hardness of its constituent phases and restricting the dislocation motion to further enhance the extrinsic hardness through forming numerous atom-scale interlocks between different slip systems. Moreover, the HEDC maintains the excellent electrical conductivity of the constituent borides, and the competition between two correlating structures produces the special kind of coherent boundary that minimizes the scattering of conducting electrons and does not largely deteriorate the electrical conductivity.
RESUMEN
Blood-based tests have sparked tremendous attention in non-invasive early diagnosis of Alzheimer's disease (AD), a most prevalent neurodegenerative malady worldwide. Despite significant progress in the methodologies for detecting AD core biomarkers such as Aß42 from serum/plasma, there remains cautious optimism going forward due to its controversial diagnostic value and disease relevance. Here, a graphene electrolyte-gated transistor biosensor is reported for the detection of serum neuron-derived exosomal Aß42 (NDE-Aß42), which is an emerging, compelling trove of blood biomarker for AD. Assisted by the antifouling strategy with the dual-blocking process, the noise against complex biological background was considerably reduced, forging an impressive sensitivity gain with a limit of detection of 447 ag/mL. An accurate detection of SH-SY5Y-derived exosomal Aß42 was also achieved with highly conformable enzyme-linked immunosorbent assay results. Importantly, the clinical analysis for 27 subjects revealed the immense diagnostic value of NDE-Aß42, which can outclass that of serum Aß42. The developed electronic assay demonstrates, for the first time, nanosensor-driven NDE-Aß42 detection, which enables a reliable discrimination of AD patients from non-AD individuals and even the differential diagnosis between AD and vascular dementia patients, with an accuracy of 100% and a Youden index of 1. This NDE-Aß42 biosensor defines a robust approach for blood-based confident AD ascertain.
Asunto(s)
Enfermedad de Alzheimer , Grafito , Neuroblastoma , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Neuronas , Biomarcadores , Fragmentos de Péptidos , Proteínas tauRESUMEN
The rapid and sensitive detection of trace-level viruses in a simple and reliable way is of great importance for epidemic prevention and control. Here, a multi-functionalized floating gate carbon nanotube field effect transistor (FG-CNT FET) based biosensor is reported for the single virus level detection of SARS-CoV-2 virus antigen and RNA rapidly with a portable sensing platform. The aptamers functionalized sensors can detect SARS-CoV-2 antigens from unprocessed nasopharyngeal swab samples within 1 min. Meanwhile, enhanced by a multi-probe strategy, the FG-CNT FET-based biosensor can detect the long chain RNA directly without amplification down to single virus level within 1 min. The device, constructed with packaged sensor chips and a portable sensing terminal, can distinguish 10 COVID-19 patients from 10 healthy individuals in clinical tests both by the RNAs and antigens by a combination detection strategy with an combined overall percent agreement (OPA) close to 100%. The results provide a general and simple method to enhance the sensitivity of FET-based biochemical sensors for the detection of nucleic acid molecules and demonstrate that the CNT FG FET biosensor is a versatile and reliable integrated platform for ultrasensitive multibiomarker detection without amplification and has great potential for point-of-care (POC) clinical tests.
Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanotubos de Carbono , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Nanotubos de Carbono/química , Técnicas Biosensibles/métodosRESUMEN
AIMS: Focal cortical dysplasia (FCD) is a major cause of drug-resistant paediatric epilepsy and is amenable to successful neurosurgical resection. FCD ILAE Type IIb is the most common FCD subtype, and brain somatic mutations affecting the mTOR pathway play a major pathogenic role. The aim of this study was to comprehensively describe the genotype-phenotype association of 20 patients with histopathologically confirmed FCDIIb using next generation sequencing (NGS) of paired blood-brain samples. METHODS: Clinical and neuropathological data were retrospectively reviewed from the hospital archive. The NGS panel included 11 mTOR-pathway-related genes with maximum coverage of 2000×. The detected variants were validated by digital droplet PCR. RESULTS: Pathogenic MTOR variants were identified in 10 patients (50%). Further comparison with MTOR-wildtype FCDIIb suggested a profound genotype-phenotype association characterised by (1) a non-temporal lobe lesion on MRI, (2) a larger lesion volume occupying grey and white matter (3.032 ± 1.859 cm3 vs 1.110 ± 0.856 cm3 , p = 0.014), (3) more balloon cells (50.20 ± 14.40 BC/mm2 vs 31.64 ± 30.56 BC/mm2 , p = 0.099) and dysmorphic neurons (48.72 ± 19.47DN/mm2 vs 15.28 ± 13.95DN/mm2 , p = 0.000) and (4) a positive correlation between VAF and the lesion volume (r = 0.802, p = 0.017). CONCLUSIONS: Our study identified frequent MTOR mutations in the cell-rich FCDIIb phenotype, clinically characterised by a non-temporal location and large lesion volume. Comprehensive genotype-phenotype associations will help us further explore and define the broad spectrum of FCD lesions to make more targeted therapies available in the realm of epileptology.
Asunto(s)
Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Humanos , Mosaicismo , Estudios Retrospectivos , Malformaciones del Desarrollo Cortical/genética , Epilepsia/patología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The scintillation of the orbital angular momentum (OAM) of a Bessel Gaussian beam was derived based on the Rytov method to characterize the performance of the OAM communication. Moreover, a multi-parameter demultiplexing method was also proposed which could decode the OAM state, the amplitude and two additional beam width information dimensions. The advantages of the OAM states as the communication carrier over the beam intensity were that the minimum scintillation of the fundamental mode was smaller, and its corresponding radius also diverged slower. The coefficient of variation of the decoding amplitude was approximated to the square root of the radial minimum scintillation, and it provided an estimated decoding precision for the input sample selection. This study not only provided theoretical basis for communication link design, but also had a promising application on the large capacity beam multiplexing in free-space laser communication.
RESUMEN
PURPOSE: To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS: TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION: The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/genética , Inmunoprecipitación de Cromatina , Receptor Notch3/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Early, express, and reliable detection of cancer can provide a favorable prognosis and decrease mortality. Tumor biomarkers have been proven to be closely related to tumor occurrence and development. Conventional tumor biomarker detection based on genomic, proteomic, and metabolomic methods is time and equipment-consuming and always needs a specific target marker. Surface-enhanced Raman scattering (SERS), as a non-invasive ultrasensitive and label-free vibrational spectroscopy technique, can detect cancer-related biomedical changes in biofluids. In this paper, 110 serum samples were collected from 30 healthy controls and 80 cancer patients (including 30 bladder cancer (BC), 30 adrenal cancer (AC), and 20 acute myeloid leukemia (AML)). One microliter of blood serum was mixed with 1 µl silver colloid and then was air-dried for SERS measurements. After spectral data augmentation, one-dimensional convolutional neural network (1D-CNN) was proposed for precise and rapid identification of healthy and three different cancers with high accuracy of 98.27%. After gradient-weighted class activation mapping (Grad-CAM) based spectral interpretation, the contributions of SERS peaks corresponding to biochemical substances indicated the most potential biomarkers, i.e., L-tyrosine in bladder cancer; acetoacetate and riboflavin in adrenal cancer and phospholipids, amide-I, and α-Helix in acute myeloid leukemia, which might provide an insight into the mechanism of intelligent diagnosis of different cancers based on label-free serum SERS. The integration of label-free SERS and deep learning has great potential for the rapid, reliable, and non-invasive detection of cancers, which may significantly improve the precise diagnosis in clinical practice.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Aprendizaje Profundo , Neoplasias de la Vejiga Urinaria , Humanos , Proteómica , Neoplasias de la Vejiga Urinaria/diagnóstico , Biomarcadores de Tumor , Espectrometría RamanRESUMEN
The piriform cortex (PC) is part of the olfactory system, principally receiving input from the lateral olfactory tract and projecting to downstream components of the olfactory network, including the amygdala. Based on preclinical studies, PC is vulnerable to injury and can be easily kindled as an onset site for seizures. While the role of PC in human epilepsy has been studied indirectly and the subject of speculation, cases of demonstrated PC seizure onset from direct intracranial recording are rare. We present a pediatric patient with drug-resistant focal reflex epilepsy and right mesial temporal sclerosis with habitual seizures triggered by coconut aroma. The patient underwent stereoelectroencephalography with implantation of olfactory cortices including PC, through which we identified PC seizure onset, mapped high-frequency activity associated with presentation of olfactory stimuli and performance on cognitive tasks, and reproduced habitual seizures via cortical stimulation of PC. Coconut odor did not trigger seizures in our work with the patient. Surgical workup resulted in resection of the patient's right amygdala, PC, and mesial temporal pole, following which she has been seizure free for 20 months without functional decline in cognition or smell. Histological findings from resected tissue showed astrogliosis and subpial gliosis.