Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(12): e2307203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939294

RESUMEN

Anisotropic colloidal particles with asymmetric morphology possess functionally rich heterogeneous structures, thus offering potential for intricate superstructures or nanodevices. However, it is a challenge to achieve controlled asymmetric surface partitioned growth. In this work, an innovative strategy is developed based on the selective adsorption and growth of emulsion droplets onto different regions of object which is controlled by wettability. It is found that the emulsion droplets can selectively adsorb on the hydrophilic surface but not the hydrophobic one, and further form asymmetric tentacle by the interfacial sol-gel process along its trajectory. Janus particles with an anisotropic shape and multitentacle structure are achieved via integration of emulsion droplet (soft) and seed (hard) templates. The size and number of tentacles exhibit tunability mediated by soft and hard templates, respectively. This general strategy can be expanded to a variety of planar substrates or curved particles, further confirming the correlation between tentacle growth and Brownian motion. Most interestingly, it can be employed to selectively modify one region of surface partitioned particles to achieve an ABC three-component Janus structure.

2.
PLoS Comput Biol ; 19(3): e1010690, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996232

RESUMEN

We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.


Asunto(s)
Neoplasias Pulmonares , Lisina , Humanos , Fosforilación , Lisina/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Neoplasias Pulmonares/metabolismo , Ubiquitinación , Transducción de Señal
3.
Am J Hematol ; 99(6): 1040-1055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440831

RESUMEN

Myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocytosis, and primary myelofibrosis, are clonal hematopoietic neoplasms driven by mutationally activated signaling by the JAK2 tyrosine kinase. Although JAK2 inhibitors can improve MPN patients' quality of life, they do not induce complete remission as disease-driving cells persistently survive therapy. ERK activation has been highlighted as contributing to JAK2 inhibitor persistent cell survival. As ERK is a component of signaling by activated RAS proteins and by JAK2 activation, we sought to inhibit RAS activation to enhance responses to JAK2 inhibition in preclinical MPN models. We found the SHP2 inhibitor RMC-4550 significantly enhanced growth inhibition of MPN cell lines in combination with the JAK2 inhibitor ruxolitinib, effectively preventing ruxolitinib persistent growth, and the growth and viability of established ruxolitinib persistent cells remained sensitive to SHP2 inhibition. Both SHP2 and JAK2 inhibition diminished cellular RAS-GTP levels, and their concomitant inhibition enhanced ERK inactivation and increased apoptosis. Inhibition of SHP2 inhibited the neoplastic growth of MPN patient hematopoietic progenitor cells and exhibited synergy with ruxolitinib. RMC-4550 antagonized MPN phenotypes and increased survival of an MPN mouse model driven by MPL-W515L. The combination of RMC-4550 and ruxolitinib, which was safe and tolerated in healthy mice, further inhibited disease compared to ruxolitinib monotherapy, including extending survival. Given SHP2 inhibitors are undergoing clinical evaluation in patients with solid tumors, our preclinical findings suggest that SHP2 is a candidate therapeutic target with potential for rapid translation to clinical assessment to improve current targeted therapies for MPN patients.


Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Nitrilos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Pirazoles , Pirimidinas , Janus Quinasa 2/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Trastornos Mieloproliferativos/tratamiento farmacológico , Humanos , Ratones , Nitrilos/uso terapéutico , Pirazoles/uso terapéutico , Pirazoles/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
4.
Nanotechnology ; 35(31)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38657569

RESUMEN

In this paper, a new Janus-structured nano drug delivery carrier Fe3O4@TiO2&mSiO2was designed and synthesized, which consisted of a spherical head and a closely connected rod. The head was a nanocomposite of core/shell structure with magnetic spinel ferric tetraoxide core and anatase titanium dioxide shell (Fe3O4@TiO2), and the rod was ordered mesoporous silica (mSiO2). The nanocarriers showed excellent magnetic targeting capability (saturation magnetization, 25.18 emu g-1). The core/shell heads endowed the carriers with fine microwave responsiveness. The pore volume of mesoporous nanocarriers was 0.101 cm3g-1, and the specific surface area was 489.0 m2g-1. Anticancer drug doxorubicin could be loaded in the mesoporous of the carriers to form Fe3O4@TiO2&mSiO2-DOX. The drug loading capacity was 10.4%. Fe3O4@TiO2&mSiO2-DOX exhibited acid-sensitive and microwave-sensitive release properties along with good bio-compatibility. Fe3O4@TiO2&mSiO2Janus nanoparticles are expected to be ideal drug carriers.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Microondas , Dióxido de Silicio , Titanio , Dióxido de Silicio/química , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Porosidad , Titanio/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Humanos , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química
5.
BMC Geriatr ; 24(1): 360, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654207

RESUMEN

BACKGROUND: Gastric intramural hematoma is a rare disease. Here we report a case of spontaneous isolated gastric intramural hematoma combined with spontaneous superior mesenteric artery intermural hematoma. CASE PRESENTATION: A 75-years-old man was admitted to our department with complaints of abdominal pain. He underwent a whole abdominal computed tomography (CT) scan in the emergency department, which showed extensive thickening of the gastric wall in the gastric body and sinus region with enlarged surrounding lymph nodes, localized thickening of the intestinal wall in the transverse colon, localized indistinct demarcation between the stomach and transverse colon, and a small amount of fluid accumulation in the abdominal cavity. Immediately afterwards, he was admitted to our department, and then we arranged a computed tomography with intravenously administered contrast agent showed a spontaneous isolated gastric intramural hematoma combined with spontaneous superior mesenteric artery intermural hematoma. Therefore, we treated him with anticoagulation and conservative observation. During his stay in the hospital, he was given low-molecular heparin by subcutaneous injection for anticoagulation therapy, and after discharge, he was given oral anticoagulation therapy with rivaroxaban. At the follow-up of more than 4 months, most of the intramural hematoma was absorbed and became significantly smaller, and the intermural hematoma of the superior mesenteric artery was basically absorbed, which also confirmed that the intramural mass was an intramural hematoma. CONCLUSION: A gastric intramural hematoma should be considered, when an intra-abdominal mass was found to be attached to the gastric wall. Proper recognition of gastric intramural hematoma can reduce the misdiagnosis rate of confusion with gastric cancer.


Asunto(s)
Hematoma , Arteria Mesentérica Superior , Humanos , Masculino , Anciano , Hematoma/complicaciones , Hematoma/diagnóstico , Hematoma/diagnóstico por imagen , Arteria Mesentérica Superior/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Gastropatías/complicaciones , Gastropatías/diagnóstico
6.
BMC Pulm Med ; 24(1): 306, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944669

RESUMEN

BACKGROUND: For patients with congenital heart disease-related pulmonary arterial hypertension (CHD-PAH), cardiopulmonary exercise testing (CPET) can reflect cardiopulmonary reserve function. However, CPET may not be readily accessible for patients with high-risk conditions or limited mobility due to disability. Echocardiography, on the other hand, serves as a widely available diagnostic tool for all CHD-PAH patients. This study was aimed to identify the parameters of echocardiography that could serve as indicators of cardiopulmonary function and exercise capacity. METHODS: A cohort of 70 patients contributed a total of 110 paired echocardiogram and CPET results to this study, with 1 year interval for repeated examinations. Echocardiography and exercise testing were conducted following standardized procedures, and the data were collected together with clinically relevant indicators for subsequent statistical analysis. Demographic comparisons were performed using t-tests and chi-square tests. Univariate and multivariate analyses were conducted to identify potential predictors of peak oxygen uptake (peak VO2) and the carbon dioxide ventilation equivalent slope (VE/VCO2 slope). Receiver operating characteristic (ROC) analysis was used to assess the performance of the parameters. RESULTS: The ratio of tricuspid annular plane systolic excursion to pulmonary artery systolic pressure (TAPSE/PASP) was found to be the only independent indicator significantly associated with both peak VO2 and VE/VCO2 slope (both p < 0.05). Additionally, left ventricular ejection fraction (LVEF) and right ventricular fractional area change (FAC) were independently correlated with the VE/VCO2 slope (both p < 0.05). TAPSE/PASP showed the highest area under the ROC curve (AUC) for predicting both a peak VO2 ≤ 15 mL/kg/min and a VE/VCO2 slope ≥ 36 (AUC = 0.91, AUC = 0.90, respectively). The sensitivity and specificity of TAPSE/PASP at the optimal threshold exceeded 0.85 for both parameters. CONCLUSIONS: TAPSE/PASP may be a feasible echocardiographic indicator for evaluating exercise tolerance.


Asunto(s)
Ecocardiografía , Prueba de Esfuerzo , Cardiopatías Congénitas , Curva ROC , Humanos , Femenino , Masculino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/diagnóstico por imagen , Adulto , Tolerancia al Ejercicio/fisiología , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Consumo de Oxígeno , Persona de Mediana Edad , Adulto Joven , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen
7.
Anal Chem ; 95(2): 1376-1384, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36562538

RESUMEN

As a momentous gas signal molecule, sulfur dioxide (SO2) participates in diverse physiological activities. Excess SO2 will cause an apparent decrease in the level of intracellular glutathione (GSH), thereby damaging the body's antioxidant defense system. In addition, endogenous SO2 can be generated from GSH by reacting with thiosulfate (S2O32-) and enzymatically reduced to cysteine (Cys), a synthetic precursor of GSH. In view of their close correlation, a two-photon (TP) mitochondria-targeted multifunctional fluorescence sensor Mito-Na-BP was rationally designed and synthesized for detecting SO2 and GSH simultaneously. Under single-wavelength excitation, the sensor responded to GSH-SO2 and SO2-GSH continuously with blue-shifted and green fluorescence-enhanced signal modes, respectively, not just to GSH (enhanced) and SO2 (quenched) at 638 nm with a completely converse response tendency. Given its favorable spectral performance (high sensitivity, superior selectivity, and fast response rate) at physiological pH, Mito-Na-BP has been successfully applied in monitoring the level fluctuation of GSH affected from high-dose SO2 and visualizing in real time the metabolic process of GSH to SO2 by TP imaging. It is expected that this research will provide a convenient and efficient tool for elucidating intricate relationships of GSH and SO2 and facilitate further exploration of their functions in biomedicine.


Asunto(s)
Diagnóstico por Imagen , Dióxido de Azufre , Humanos , Fluorescencia , Dióxido de Azufre/química , Glutatión/metabolismo , Colorantes Fluorescentes/química , Células HeLa
8.
Anal Chem ; 95(32): 11969-11977, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37524653

RESUMEN

Ribonuclease (RNA) modifications can alter cellular function and lead to differential immune responses by acting as discriminators between RNAs from different phyla. RNA glycosylation has recently been observed at the cell surface, and its dysregulation in disease may change RNA functions. However, determining which RNA substrates can be glycosylated remains to be explored. Here, we develop a solid-phase chemoenzymatic method (SPCgRNA) for targeting glycosylated RNAs, by which glycosylated RNA substrates can be specifically recognized. We found the differential N-glycosylation of small RNAs in hTERT-HPNE and MIA PaCa-2 cancer cells using SPCgRNA. RNA-Seq showed that the changes in glyco-miRNAs prepared from SPCgRNA were consistent with those of traditional methods. The KEGG signaling pathway analysis revealed that differential miRNA glycosylation can affect tumor cell proliferation and survival. Further studies found that NGI-1 significantly inhibited the proliferation, migration, and circulation of MIA PaCa-2 and promoted cell apoptosis. In addition, ß-1,4-galactosyltransferase 1 (B4GALT1) not only affected the expression level of glycosylated miRNAs hsa-miR-21-5p but also promoted cell apoptosis and inhibited the cell cycle possibly through the p53 signaling pathway, while B4GALT1 and p53 were also affected following the hsa-miR-21-5p increase. These results suggest that B4GALT1 may catalyze miRNAs glycosylation, which further promotes cancer cell progression.


Asunto(s)
ARN , Glicosilación , ARN/química , ARN/metabolismo , Oxidación-Reducción , Perfilación de la Expresión Génica , Humanos , Línea Celular Tumoral , Transducción de Señal
9.
Org Biomol Chem ; 21(3): 551-563, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36537901

RESUMEN

The mechanism of the selective protection of L-lysine mediated by ß-cyclodextrin (ß-CD) was investigated by preliminary experiments, including the reaction efficiency influenced by different reaction conditions, and the existence of (1a·CD)' and 1a·CD·2a was evidenced by ESI-MS and 2D Rotating Frame Overhauser Effect Spectroscopy (ROESY) analysis. The results indicated that the formation of (1a·CD)' is critical for the product selectivity and the further formation of the ternary complex 1·CD·2 is responsible for the reaction efficiency. Thus, the yields and selectivity were significantly influenced by the structure, size and reactivity of the reactants. During the mechanistic investigations, we realized that the formation of the product and the ß-CD complex at the final stage of the reaction would cause difficulty in product purification by a previously reported homogeneous method. In light of this understanding, an efficient and practical protocol for selective protection of L-lys based on a heterogeneous catalyst SiO2@CD was developed. The use of the SiO2 immobilized ß-CD catalyst prevented the formation of the "capped" products by controlling the spatial rearrangement of ß-CDs on solid supports, which represents a considerable synthetic improvement over the tedious and wasteful organic solvent extraction for product purification.


Asunto(s)
Lisina , Dióxido de Silicio , Solventes
10.
Org Biomol Chem ; 21(34): 7005-7017, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37593934

RESUMEN

A series of novel erianin analogues were designed and synthesized based on the bioisosterism principle by altering the two aromatic rings of erianin, the substituents on the rings and the linker between them. The analogues were evaluated as pyruvate carboxylase (PC) inhibitors in hepatocellular carcinoma cells. It was found that compounds 35 and 36, where fluorine replaces a hydroxyl group, exhibited higher activity than erianin (IC50 value of 17.30 nM) in liver cancer cells with IC50 values of 15.15 nM and 10.05 nM, respectively. Additionally, at a concentration of 10 nM, compounds 35 and 36 inhibited PC with inhibitory rates of 39.10% and 40.15%, respectively, exhibiting nearly identical inhibitory activity to erianin (inhibitory rate of 40.07%). Additionally, a computer simulation docking study demonstrated the basis for better interactions between the receptors and ligands. The fluorine atom of 35 can not only form hydrogen bonds with Lys-1043 (NH⋯F, 2.04 Å), but also form fluorine bonds with the carbonyl groups of Lys-1043 (3.67 Å) and Glu-1046 (3.70 Å), due to the different orientations of the halogens on the B ring warhead. Conversely, the chlorine atom of 34 can only form alkyl hydrophobic interactions with the alkane chain in Lys-1043. Fluorinated compounds 35 and 36 also show better chemical stability and higher log P (clog P = 3.89 for 35 and 36) values than that of erianin (clog P = 3.07), and may be used as candidate compounds for further drug development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piruvato Carboxilasa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Simulación por Computador , Flúor , Halógenos , Neoplasias Hepáticas/tratamiento farmacológico , Piruvato Carboxilasa/antagonistas & inhibidores , Relación Estructura-Actividad
11.
Bioorg Chem ; 130: 106201, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327683

RESUMEN

Thirteen new alkaloids (1-13) as well as ten known compounds were isolated from the solid-state fermented rice medium of the fungus Chaetomium nigricolor YT-2. Their structures were elucidated on the basis of spectroscopic data, quantum calculations, and single crystal X-ray crystallographic analysis. Chaetonigrisin A (1) represents an unprecedented carbon skeleton featuring a polycyclic 1H-pyrano[3,2:3,4-]​furo[2,​3-​b]​indole. Chaetonigrisin B (2) displays a unique carbon skeleton with a 1,3­dioxolane bridged-ring. Chaetonigrisin C (3) is a spirocyclic indole alkaloid. Chaetonigrisins D-H (4-8) are a group of asymmetric dimers, formed with two 3-indol-3yl-1,2-propanediol (4-6) or with a 3-indol-3yl-1,2-propanediol and a 3-indol-2yl-1,2-propanediol (7-8) by a pyran ring. Chaetonigrisins I-L (9-12) each contains a 3-indol-3yl-1,2-propanediol or 3-indol-2yl-1,2-propanediol substructure. Chaetonigrisin M (13) is a new quinoline alkaloid. The neuroprotective activity assay showed that at the concentration of 40 µM, compounds (4-7, 11, and 12) improved the cell viability of PC12 cells were 49.26 %, 74.69 %, 74.76 %, 86.63 %, 66.89 %, and 69.92 %, respectively induced by 6-OHDA, compound 7 showed significant neuroprotective activity via upregulation of SOD1 mRNA and Bcl-2 mRNA.


Asunto(s)
Alcaloides , Chaetomium , Chaetomium/química , Propilenglicol , Alcaloides Indólicos/química , Alcaloides/química , Carbono , ARN Mensajero , Estructura Molecular
12.
BMC Public Health ; 23(1): 2426, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053099

RESUMEN

BACKGROUND: The Composite Dietary Antioxidant Index (CDAI) is a dietary antioxidant score that plays a protective role in many diseases, including depression, osteoporosis, papillomavirus infection, etc. However, the association between CDAI and coronary heart disease (CHD) is currently unclear. We aim to explore the correlations between CDAI and the risk of CHD. METHODS: Eligible participants were obtained from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. All participants in this cross-sectional study are required to undergo two separate 24-h dietary recall interviews. Average daily intakes of dietary antioxidants were used to calculate CDAI. CHD status was determined through a questionnaire. Weighted multiple logistic regression models were used to evaluate the relationship between CDAI and CHD. Moreover, we also used restricted cubic spline to explore Non-linear correlations. Sensitivity analysis using unweighted logistic analysis and subgroup analysis were used to demonstrate the stability of the results. RESULTS: A total of 34,699 participants were eligible for analysis.Compared to the participants without CHD, the participants with CHD showed lower levels of CDAI. After adjusting confounding factors in the multivariate weighted logistic regression model, CDAI was inversely associated with CHD (Q4 vs. Q1, OR = 0.65 (0.51-0.82, P < 0.001). Restricted cubic spline showed that there was a negative non-linear correlation (L-shaped) between CDAI and CHD, suggesting a potential saturation effect at higher CDAI levels, with the inflection point of 0.16. Sensitivity analysis showed that the results were stable. No significant statistically interaction was showed in subgroup analysis. CONCLUSIONS: There was a negative non-linear correlation between CDAI and CHD in US adults. However, further prospective studies are still needed to reveal their relationship.


Asunto(s)
Antioxidantes , Enfermedad Coronaria , Humanos , Adulto , Estudios Transversales , Encuestas Nutricionales , Enfermedad Coronaria/epidemiología , Dieta
13.
Toxicol Appl Pharmacol ; 441: 115988, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35307375

RESUMEN

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for 35% of the genetic alterations in non-small cell lung cancer (NSCLC). The Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, is closely involved in RAS downstream pathways and development of many tumors by affecting cell proliferation, differentiation, and immunity. Targeting SHP2 with small molecules may be a promising avenue for the treatment of KRAS-mutant (mut) NSCLC. Herein, hexachlorophene (HCP) was identified as a SHP2 inhibitor with an IC50 value of 5.63 ± 0.75 µM through screening of the FDA-approved drug library. HCP specifically inhibited SHP2 rather than other phosphatases. Molecular docking showed that HCP displayed an orientation favorable for nucleophilic attack in the catalytic domain of SHP2. HCP suppressed viability of multiple KRAS-mut and KRAS-wild type cells and induced senescence and apoptosis in KRAS-mut cells. Moreover, HCP reversed epithelial-mesenchymal transition to suppress metastasis in KRAS-mut cells, and inhibited the RAS/MEK/ERK and PI3K/AKT signaling pathways by suppression of SHP2 phosphorylation and formation SHP2/Grb2/Gab1/SOS1 complex. In summary, HCP can act as a specific SHP2 inhibitor to inhibit KRAS-mut NSCLC cell proliferation and metastasis and induce senescence through suppression of the RAF/MEK/ERK and PI3K/AKT pathways. HCP warrants further investigation as a new compound skeleton for the development of selective SHP2 inhibitors for the treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Hexaclorofeno , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
14.
Org Biomol Chem ; 20(5): 1117-1124, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040468

RESUMEN

The prenylation of phenolic substrates promoted by magnesium dicarboxylates was developed. An investigation of the scope demonstrated that substrates with electron-donating group(s) gave better yields than those with electron-withdrawing group(s). Although the conversions of all substrates were higher in MeCN than in DMF, DMF was still the favorable solvent for polyphenolic substrates since MeCN would cause the generation of cyclized by-products (6) and reduce the yield of 3. The regio-selectivity of ortho- vs. para-prenylation (3'vs.3'') for those para-unoccupied substrates was also solvent dependant. DMF produced mainly ortho-products but with poor conversions. On the other hand, MeCN generated mainly para-products, along with minor ortho-products. Mechanistic study of the prenylation provided evidence for the nucleophilic addition/substitution of the phenolic substrate to the alkyl halide in the presence of the magnesium dicarboxylates. The proto application of this method in the total synthesis of icaritin through the prenylation of 2,4,6-trihydroxyacetophenone, followed by the reaction with benzaldehyde to afford the flavonol, was successful, with a total yield of 33%.

15.
Bioorg Med Chem ; 66: 116811, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576655

RESUMEN

Acute inflammatory diseases, such as sepsis, are life-threatening illnesses. Regulating the α7 nicotinic acetylcholine receptor (α7 nAchR)-mediated signaling may be a promising strategy to treat sepsis. Diarylheptanoids have long been found to exhibit anti-inflammatory properties. However, the possible mechanism of diarylheptanoids has rarely been investigated. In this study, we isolated and synthesized 49 diarylheptanoids and analogues and evaluated their anti-inflammatory activities. Among them, compounds 28 and 40 markedly blocked lipopolysaccharide (LPS)-induced production of nitric oxide (NO), interleukin-1ß (IL-1ß) and interleukin-6 in murine RAW264.7 cells. Furthermore, compounds 28 and 40 also effectively attenuated LPS-induced sepsis, acute lung injury, and cytokines release in vivo. Mechanistically, compounds 28 and 40 significantly induced phosphorylation of janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling and suppression of nuclear factor-κB (NF-κB) pathway. Furthermore, blocking α7 nAchR could effectively abolish compounds 28 and 40-mediated activation of JAK2-STAT3 signaling as well as inhibition of NF-κB activation and NO production in LPS-exposed RAW264.7 cells. Collectively, our findings have identified a new diarylheptanoid, compound 28, as an agonist of α7 nAchR-JAK2-STAT3 signaling, which can be potentially developed as a valuable candidate for the treatment of sepsis, and provide a new lead structure for the development of anti-inflammatory agents targeting α7 nAchR-JAK2-STAT3 signaling.


Asunto(s)
Janus Quinasa 2 , Sepsis , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Diarilheptanoides/farmacología , Janus Quinasa 2/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Ratones , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
16.
J Pharmacol Exp Ther ; 376(3): 464-472, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33397676

RESUMEN

Recent studies suggest an important role for RNA, especially noncoding RNA, in inflammatory bowel disease (IBD) and colon cancer. Drug development based on regulating RNA rather than protein is a promising new area. Phytochemicals are naturally occurring plant-derived compounds with chemical diversity, biologic activity, easy availability, and low toxicity. Many phytochemicals have been shown to exert protective effects on IBD and colon cancer through modulation of RNAs. The aim of this study was to summarize the advancements of phytochemicals in regulating RNA for the treatment of IBD and colon cancer. This review involves many phytochemicals, including polyphenols, flavones, and alkaloids, which can influence various types of RNAs, including microRNA, long noncoding RNA, as well as messenger RNA, by influencing a variety of upstream molecules or regulating epigenetic processes. The limitation for many current studies is that the specific mechanisms of phytochemicals regulating RNA have not been fully uncovered. Accompanied by more identified functions of RNAs, especially noncoding RNA functions, the screening of RNA-regulating phytochemicals has presented challenges as well as opportunities for the prevention and treatment of IBD and colon cancer. SIGNIFICANCE STATEMENT: Noncoding RNAs, which constitute the majority of the human transcriptional genome, play a key role in the disease state and are considered as important therapeutic targets in inflammatory bowel disease (IBD) and colon cancer. Recent studies have shown that phytochemicals regulate the expression of many noncoding RNAs involved in IBD and colon cancer. Therefore, identifying the specific molecular mechanism of phytochemicals regulating noncoding RNA in disease models may result in novel and effective therapeutic opportunities.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Terapia Molecular Dirigida/métodos , Fitoquímicos/farmacología , ARN/genética , Animales , Humanos , Fitoquímicos/uso terapéutico
17.
Bioorg Chem ; 116: 105364, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560558

RESUMEN

(±)-Caryopterisines A (1) and B (2) featuring an unprecedented 6/5/5/5/6 pentacyclic rings system were isolated from Caryopteris glutinosa. The structures were determined by spectroscopic and X-ray crystallographic data analyses as well as theoretical calculations. Chiral HPLC resolution of both racemic 1 and 2 afforded their corresponding enantiotropic enantiomers. A plausible biogenesis for 1 and 2 may be originated from Diels-Alder reaction between pyridine-containing oxerine derivatives. The enantiotropic conversion mechanism of the enantiomers was demonstrated by H-D exchange and 18O incorporation studies. Compounds 1 and 2 showed moderate inhibition of estrogen E2 biosynthesis in human ovarian granulosa-like KGN cells. These two alkaloids reduced kynurenine biosynthesis at moderate level via inhibition of indoleamine 2,3-dioxygenase. Alkaloid 2 exhibited moderate inhibition of the release of interleukin-1ß.


Asunto(s)
Alcaloides/farmacología , Receptor beta de Estrógeno/antagonistas & inhibidores , Lamiaceae/química , Monoterpenos/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Línea Celular , Relación Dosis-Respuesta a Droga , Receptor beta de Estrógeno/metabolismo , Humanos , Estructura Molecular , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Estereoisomerismo , Relación Estructura-Actividad
18.
Bioorg Chem ; 112: 104845, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33812268

RESUMEN

Steroidal alkaloids (1-11), including one new 24-hydroxylated cevanine-type steroidal alkaloid, named yibeinone F (1), were isolated from the bulbs of Fritillaria pallidiflora Schrenk. Their structures were elucidated by analyses of extensive spectroscopic data and comparison of the NMR data with those reported previously, and the structures of compounds 1, 7 and 11 were further confirmed by X-ray single crystal diffraction analyses. The anti-inflammatory effects of all the isolated alkaloids were evaluated in LPS-activated RAW264.7 macrophages. Among them, compounds 9 (stenanzine) and 10 (hapepunine) showed significant inhibitory effects against LPS-induced NO production with IC50 values of 8.04 µM and 20.85 µM, respectively. Furthermore, compound 9 effectively inhibited the release of cytokines such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2), and suppressed the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) in LPS-stimulated RAW264.7 cells. Further experiments revealed the underlying mechanism that 9 blocked LPS-induced phosphorylation and degradation of inhibitor-α of nuclear transcription factor κB (IκBα) and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. Taken together, compound 9 may be a valuable candidate for the treatment of inflammatory diseases.


Asunto(s)
Alcaloides/farmacología , Antiinflamatorios/farmacología , Fritillaria/química , Esteroides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Conformación Molecular , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Esteroides/química , Esteroides/aislamiento & purificación , Relación Estructura-Actividad
19.
J Asian Nat Prod Res ; 23(7): 681-691, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32406754

RESUMEN

A series of new berbamine derivatives were synthesized, and their cytotoxic activity was evaluated against Human T-cell lymphoma cell line H9 and multiple myeloma cell line RPMI8226 in vitro. Compared with berbamine, the cytotoxicity of the modified derivatives was enhanced, especially simultaneously substituted at OH and 5-position. Compounds 2a and 4b exhibited high antitumor activity. The IC50 value of compound 2a was 0.30 µM for RPMI8226 cells, and the IC50 value of compound 4b was 0.36 µM for H9 cells, whereas berbamine IC50 values were 4.0 µM for H9 cells and 6.19 µM for RPMI8226 cells, respectively.[Formula: see text].


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Bencilisoquinolinas , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805945

RESUMEN

The aberrant activation of a signal transducer and activator of transcription 3 (STAT3) restrains type I interferon (IFN) α/ß-induced antiviral responses and is associated with the development of cancer. Designing specific STAT3 inhibitors will thus provide new options for use as IFN therapy. Herein, we identified a novel small molecule, dimethyl 2-(4-(2-(methyl(phenyl(p-tolyl)methyl)amino)ethoxy)benzyl)malonate (CIB-6), which can inhibit the IFN-α-induced interferon stimulated response element (ISRE) luciferase reporter (IC50 value = 6.4 µM) and potentiate the antiproliferative effect of IFN-α in human hepatocellular carcinoma (HCC) cells. CIB-6 was found to bind to the STAT3 Src homology 2 (SH2) domain, thereby selectively inhibiting STAT3 phosphorylation without affecting Janus kinases and STAT1/2. CIB-6 also inhibited the migration and invasion of HCC cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Mechanistically, CIB-6 reduced the expression of ß-catenin (an EMT key protein) via upregulating ß-transducin repeat-containing protein (ß-TrCP) and curbed nuclear factor kappa-B (NF-κB) activation through restricting the phosphorylation of the inhibitor of NF-κB (IκB) kinase (IKK) via STAT3 inhibition. Treatment with CIB-6 significantly retarded tumor growth in nude mice with SK-HEP-1 xenografts. In addition, clinical sample analysis revealed that lower ß-TrCP and higher ß-catenin expression could affect the median survival time of HCC patients. Our findings suggest that CIB-6 could be a new therapeutic strategy for HCC therapy through STAT3-mediated ß-TrCP/ß-catenin/NF-κB axis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Malonatos/farmacología , Factor de Transcripción STAT3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Fosforilación , Proteínas Recombinantes/química , Elementos de Respuesta , Transducina , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA