Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 24(10): e202200813, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36759326

RESUMEN

In this work, two kinds of BN-nanowires (BNnws): a-BNnw and d-BNnw, respectively composed of azo (N-N) and diboron (B-B) bonds, are proposed with the aid of the first-principles simulations. Their structural stabilities are carefully verified from the energetics, lattice dynamics, and thermodynamic perspectives. Similar to the other common boron nitride polymorph, the a-BNnw and d-BNnw are semiconductors with relatively wide band gaps of 3.256 and 4.631 eV at the HSE06 level, respectively. The corresponding projected DOS patterns point out that their band edges are composed of different atomic species, which can help with the separation of their excitons. The band gaps can be manipulated monotonically by axial strains within the elastic ranges. The major charge carriers are electron holes. Significantly, a-BNnw possesses very high carrier mobilities around 0.44×104  cm2 V-1 s-1 .

2.
J Org Chem ; 88(11): 7320-7327, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37167409

RESUMEN

The rhodium(III)-catalyzed reaction of aniline derivatives that contain a pyrimidine-directing group with vinylsilanes results in the formation of C3-substituted indoline derivatives. The reaction path and formation of the indoline product with density functional theory calculations were analyzed. This study reveals that the whole catalysis can be characterized in the following stages: (I) C-H activation via concerted metalation deprotonation, (II) 2,1-vinylsilane insertion, (III) deprotonation of the NH amide proton, (IV) the oxidation of Ag+, and (V) reductive elimination. These steps are kinetically and thermodynamically feasible for experimental realization under mild conditions, and the insertion step with a barrier of 22.0 kcal/mol should not only be the critical step of regioselectivity but also the rate-determining step during the whole catalysis. Computations reveal that the Ag+ oxidation can accelerate the reductive elimination step after the formation of natural intermediate, thus highlighting the role of Ag+ as a catalytic promoter for the oxidatively induced reactivity of the Rh catalyst in C3-substituted indoline synthesis.

3.
Phys Chem Chem Phys ; 25(35): 23555-23567, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655706

RESUMEN

There is an urgent need for highly effective therapeutic agents to interrupt the continued spread of SARS-CoV-2. As a pivotal protease in the replication process of coronaviruses, the 3CLpro protein is considered as a potential target of drug development to stop the spread and infection of the virus. In this work, molecular dynamics (MD) simulations were used to elucidate the molecular mechanism of a novel and highly effective non-covalent inhibitor, WU-04, targeting the SARS-CoV-2 3CLpro protein. The difference in dynamic behavior between the apo-3CLpro and the holo-3CLpro systems suggests that the presence of WU-04 inhibits the motion amplitude of the 3CLpro protein relative to the apo-3CLpro system, thus maintaining a stable conformational binding state. The energy calculations and interaction analysis show that the hot-spot residues Q189, M165, M49, E166, and H41 and the warm-spot residues H163 and C145 have a strong binding capacity to WU-04 by forming multiple hydrogen bonds and hydrophobic interactions, which stabilizes the binding of the inhibitor. After that, the resistance of WU-04 to the six SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Lambda, and Omicron) and two other mainstream coronavirus (SARS-CoV and MERS-CoV) 3CLpro proteins was further investigated. Excitingly, the slight difference in energy values relative to the SARS-CoV-2 system indicates that WU-04 is still highly effective against the coronaviruses, which becomes crucial evidence that WU-04 is a pan-inhibitor of the 3CLpro protein in various SARS-CoV-2 variants and other mainstream coronaviruses. The study will hopefully provide theoretical insights for the future rational design and improvement of novel non-covalent inhibitors targeting the 3CLpro protein.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2
4.
Phys Chem Chem Phys ; 25(3): 2304-2319, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597957

RESUMEN

Since the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), SARS-CoV-2 has evolved by acquiring genomic mutations, resulting in the recent emergence of several SARS-CoV-2 variants with improved transmissibility and infectivity relative to the original strain. An underlying mechanism may be the increased ability of the mutants to bind the receptor proteins and infect the host cell. In this work, we implemented all-atom molecular dynamics (MD) simulations to study the binding and interaction of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein singly (D614G), doubly (D614G + L452R and D614G + N501Y), triply (D614G + N501Y + E484K), and quadruply (D614G + N501Y + E484K + K417T) mutated variants with the human angiotensin-converting enzyme 2 (hACE2) receptor protein in the host cell. A combination of multiple analysis approaches elucidated the effects of mutations and the extent of molecular divergence from multiple perspectives, including the dynamic correlated motions, interaction patterns, dominant motions, free energy landscape, and charge distribution on the electrostatic potential surface between the hACE2 and all RBD variants. Moreover, free energy calculations using the MM/PBSA method evaluated the binding affinity between these RBD variants and hACE2. The results showed that the D614G + N501Y + E484K variant possessed the lowest free energy value (highest affinity) compared to the D614G + N501Y + E484K + K417T, D614G + L452R, D614G + N501Y, and D614G mutants. The residue-based energy decomposition also indicated that the energy contribution of residues at the mutation site to the total binding energy was highly variable. The interaction mechanisms between the different RBD variants and hACE2 elucidated in this study will provide some insights into the development of drugs targeting the new SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Simulación de Dinámica Molecular , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
5.
Phys Chem Chem Phys ; 25(21): 14711-14725, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199217

RESUMEN

Omicron is a novel variant of SARS-CoV-2 that is currently spreading globally as the dominant strain. The virus first enters the host cell through the receptor binding domain (RBD) of the spike protein by interacting with the angiotensin-converting enzyme 2 (ACE2). Thus, the RBD protein is an ideal target for the design of drugs against the Omicron variant. Here, we designed several miniprotein inhibitors in silico to combat the SARS-CoV-2 Omicron variant using single- and double-point mutation approaches, based on the structure of the initial inhibitor AHB2. Also, two parallel molecular dynamics (MD) simulations were performed for each system to reproduce the calculated results, and the binding free energy was evaluated with the MM/PBSA method. The evaluated values showed that all inhibitors, including AHB2, M7E, M7E + M43W, and M7E + M43Y, were energetically more beneficial to the binding with the RBD than ACE2. In particular, the mutant inhibitor M7E + M43Y possessed the highest binding affinity to RBD and was selected as the most promising "best" inhibitor among all inhibitors. In addition, the combination of multiple analysis methods, such as free energy landscape analysis (FEL), principal component analysis (PCA), dynamic cross-correlation matrix analysis (DCCM), and hydrogen bond, salt bridge, and hydrophobic interaction analysis, also demonstrated that the mutations significantly affect the dynamical behavior and binding pattern of the inhibitor binding to the RBD protein. The current work suggested that miniprotein inhibitors can form stable complex structures with the RBD protein and exert a blocking or inhibitory effect on the SARS-CoV-2 variant Omicron. In conclusion, this study has identified several novel mutant inhibitors with enhanced affinity to the RBD protein, and provided potential guidance and insights for the rational design of therapeutic approaches for the new SARS-CoV-2 variant Omicron.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Mutación , Unión Proteica
6.
Phys Chem Chem Phys ; 25(37): 25871-25879, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37725156

RESUMEN

Tri-(2,4,6-trichlorophenyl)methyl (TTM) based radicals can be promising in providing relatively high fluorescence quantum efficiency. In this study, we have evaluated the photoluminescence properties of a series of TTM-based radicals by means of DFT and TD-DFT methods. The optimized structures of the ground states (D0) and the first excited states (D1) of all the radicals are calculated and the computed emission bands are comparable with previous experimental results. knr is determined from transition dipole moments (µ12) and the energy gaps between D0 and D1 (ΔE), both of which can be regulated by the conjugated structures from the substituent groups. knr was derived from the mode-averaging method and is consistent with the experimental results. Factors influencing kr and knr, including the potential energy differences (ΔG0), the vibrational reorganization energies (λ) and the electron coupling term (Hab), are discussed. By comparing kr and knr in solvents with different polarities (cyclohexane, toluene, and chloroform), TTM based radicals in cyclohexane exhibit the most promising fluorescence efficiencies. Besides, two substituted radicals, namely 2Br-TTM-3PCz and 2F-TTM-3PCz, have been fabricated. The results show that fluorine atoms are able to increase ΔG0 and a considerably small knr has been predicted. We expect that our calculation can benefit the design of light-emitting molecules in further experiments.

7.
Langmuir ; 38(34): 10690-10703, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35984970

RESUMEN

The ongoing pandemic of COVID-19 caused by SARS-CoV-2 has become a global health problem. There is an urgent need to develop therapeutic drugs, effective therapies, and vaccines to prevent the spread of the virus. The virus first enters the host cell through the interaction between the receptor binding domain (RBD) of spike protein and the peptidase domain (PD) of the angiotensin-converting enzyme 2 (ACE2). Therefore, blocking the binding of RBD and ACE2 is a promising strategy to inhibit the invasion and infection of the virus in the host cell. In the study, we designed several miniprotein inhibitors against SARS-CoV-2 by single/double/triple-point mutant, based on the initial inhibitor LCB3. Molecular dynamics (MD) simulations and trajectory analysis were performed for an in-depth analysis of the structural stability, essential protein motions, and per-residue energy decomposition involved in the interaction of inhibitors with the RBD. The results showed that the inhibitors have adapted the protein RBD in the binding interface, thereby forming stable complexes. These inhibitors display low binding free energy in the MM/PBSA calculations, substantiating their strong interaction with RBD. Moreover, the binding affinity of the best miniprotein inhibitor, H6Y-M7L-L17F mutant, to RBD was ∼45 980 times (ΔG = RT ln Ki) higher than that of the initial inhibitor LCB3. Following H6Y-M7L-L17F mutant, the inhibitors with strong binding activity are successively H6Y-L17F, L17F, H6Y, and F30Y mutants. Our research proves that the miniprotein inhibitors can maintain their secondary structure and have a highly stable blocking (binding) effect on SARS-CoV-2. This study proposes novel miniprotein mutant inhibitors with enhanced binding to spike protein and provides potential guidance for the rational design of new SARS-CoV-2 spike protein inhibitors.


Asunto(s)
Antivirales , Diseño de Fármacos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Antivirales/química , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
8.
Inorg Chem ; 60(3): 1480-1490, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427451

RESUMEN

Graphene materials with particular properties are proved to be beneficial to photoelectric devices, but there are rare reports on a positive effect by graphene on emissive layer materials of organic light-emitting diodes (OLEDs) previously. On the basis of the latest important experiments, an OLED device with the aid of graphene quantum dots shows the dawn of their application for luminescent materials. The luminescence performance has been improved, but the understanding of the internal excited-state radiation mechanism of the material needs further study. In this work, the Pt(II)-coordinated graphene quantum dot coplanar structures with different shapes are studied theoretically in detail, and the results present the improvement in phosphorescence under the promoted radiative decay and suppressed nonradiative decay. This composite combines the advantages of transition metal complexes and graphene quantum dots and also exhibits excellent properties in the light absorption region and carrier transportation for the OLED. This comprehensive theoretical calculation research can provide a comprehensive basis of the material design in the future.

9.
Inorg Chem ; 59(17): 12122-12131, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845614

RESUMEN

Luminescent coinage metal complexes have shown promising applications as electroluminescent emitters, photocatalysts/photosensitizers, and bioimaging/theranostic agents, rendering them attractive alternatives to transition metal complexes based on iridium, ruthenium, and platinum that have extremely low earth abundance. In comparison to the widely studied Au(I) and Cu(I) complexes, Ag(I) complexes have seldom been explored in this field because of their inferior emission properties. Herein, we report a novel series of [Ag(N^N)(P^P)]PF6 complexes exhibiting highly efficient thermally activated delayed fluorescence by using easily accessible neutral diamine ligands and commercially available ancillary diphosphine chelates. The photoluminescence quantum yields (PLQYs) of the Ag(I) emitters are ≤0.62 in doped films. The high PLQY with a large delayed fluorescence ratio enabled the fabrication of solution-processed organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 8.76%, among the highest values for Ag(I) emitter-based OLEDs. With superior emission properties and an excited state lifetime in the microsecond regime, together with its potent cytotoxicity, the selected Ag(I) complex has been used for simultaneous cell imaging and anticancer treatment in human liver carcinoma HepG2 cells, revealing the potential of luminescent Ag(I) complexes for biological applications such as theranostics.


Asunto(s)
Complejos de Coordinación/química , Fluorescencia , Luz , Semiconductores , Plata/química , Temperatura , Diaminas/química , Ligandos , Modelos Moleculares , Conformación Molecular , Teoría Cuántica , Soluciones
10.
Inorg Chem ; 59(17): 12039-12053, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786269

RESUMEN

Investigation of the clear structure-property relationship and microscopic mechanism of thermally activated delayed fluorescence (TADF) emitters with high emission quantum yield is a direction worthy of continuous efforts. The instructive theoretical principle of TADF material design is critical and challenging. Here, we carried out theoretical calculation on two experimental Cu(I) complexes with the same 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate (dppnc) but different N^N ligands [dmbpy = 6,6'-dimethyl-2,2'-bipyridine (1) or dmp = 2,9-dimethyl-1,10-phenanthroline (2)] to briefly elaborate the structure-TADF performance relationship and luminescence mechanism. It was found that enhanced rigidity by the fused benzene ring between two pyridyl units in complex 2 leads to (i) higher allowedness of S1 → S0, (ii) more effective reverse intersystem crossing (RISC), and (iii) better relative stability of the T1 state, which could be responsible for its excellent TADF behavior. Thus, a strategy of extending π conjugation in the N^N ligand could be deduced to further enhance the quantum yield. We validated it and have succeeded in designing analogue complex 4 by extending π conjugation with an electron-withdrawing pyrazinyl. Benefiting from the smaller energy gap (ΔEST) and plunged reorganization energy between the S1 and T1 states, the rate of RISC in complex 4 (1.05 × 108 s-1) increased 2 orders of magnitude relative to that of 2 (5.80 × 106 s-1), showing more superiority of the TADF behavior through a better balance of RISC, fluorescence, and phosphorescence decay. Meanwhile, the thermally activated temperature of 4 is only 165 K, implying that there is a low-energy barrier. All of these indicate that the designed complex 4 may be a potential TADF candidate.

11.
J Chem Inf Model ; 60(7): 3603-3615, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32589410

RESUMEN

The proton conduction of transmembrane influenza virus B M2 (BM2) proton channel is possibly mediated by the membrane environment, but the detailed molecular mechanism is challenging to determine. In this work, how membrane lipid composition regulates the conformation and hydration of BM2 channel is elucidated in silico. The appearance of several important hydrogen-bond networks has been discovered, as the addition of negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) and cholesterol reduces membrane fluidity and augments membrane rigidity. A more rigid membrane environment is beneficial to expand the channel, allow more water to enter the channel, promote channel hydration, and then even affect the proton conduction facilitated by the hydrated channel. Thus, membrane environment could be identified as an important influence factor of conformation and hydration of BM2. These findings can provide a unique perspective for understanding the mechanism of membrane lipid composition regulating conformation and hydration of BM2 and have important significance to the further study of anti-influenza virus B drugs.


Asunto(s)
Virus de la Influenza B , Lípidos de la Membrana/química , Proteínas de la Matriz Viral/química , Simulación por Computador , Conformación Proteica
12.
Phys Chem Chem Phys ; 22(8): 4464-4480, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32057044

RESUMEN

Infection by human immunodeficiency virus type 1 (HIV-1) not only destroys the immune system bringing about acquired immune deficiency syndrome (AIDS), but also induces serious neurological diseases including behavioral abnormalities, motor dysfunction, toxoplasmosis, and HIV-1 associated dementia. The emergence of HIV-1 multidrug-resistant mutants has become a major problem in the therapy of patients with HIV-1 infection. Focusing on the wild type (WT) and G48T/L89M mutated forms of HIV-1 protease (HIV-1 PR) in complex with amprenavir (APV), indinavir (IDV), ritonavir (RTV), and nelfinavir (NFV), we have investigated the conformational dynamics and the resistance mechanism due to the G48T/L89M mutations by conducting a series of molecular dynamics (MD) simulations and free energy (MM-PBSA and solvated interaction energy (SIE)) analyses. The simulation results indicate that alterations in the side-chains of G48T/L89M mutated residues cause the inner active site to increase in volume and induce more curling of the flap tips, which provide the main contributions to weaker binding of inhibitors to the HIV-1 PR. The results of energy analysis reveal that the decrease in van der Waals interactions of inhibitors with the mutated PR relative to the wild-type (WT) PR mostly drives the drug resistance of mutations toward these four inhibitors. The energy decomposition analysis further indicates that the drug resistance of mutations can be mainly attributed to the change in van der Waals and electrostatic energy of some key residues (around Ala28/Ala28' and Ile50/Ile50'). Our work can give significant guidance to design a new generation of anti-AIDS inhibitors targeting PR in the therapy of patients with HIV-1 infection.


Asunto(s)
Proteasa del VIH/metabolismo , Simulación de Dinámica Molecular , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Furanos , Proteasa del VIH/genética , Indinavir/química , Indinavir/metabolismo , Conformación Molecular , Mutación , Nelfinavir/química , Nelfinavir/metabolismo , Unión Proteica , Ritonavir/química , Ritonavir/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
13.
Angew Chem Int Ed Engl ; 59(17): 6915-6922, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31989771

RESUMEN

Materials exhibiting excitation wavelength-dependent photoluminescence (Ex-De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti-counterfeiting. Two multifunctional, chiral [Au(NHC)2 ][Au(CN)2 ] (NHC=(4R,5R)/(4S,5S)-1,3-dimethyl-4,5-diphenyl-4,5-dihydro-imidazolin-2-ylidene) complex double salts display Ex-De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI ⋅⋅⋅AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI ⋅⋅⋅AuI distances. An anti-counterfeiting application using these two salts is demonstrated.

14.
J Comput Chem ; 40(10): 1073-1083, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30306596

RESUMEN

The nonbonded and bonded force field parameters for carbon atoms in single-wall carbon nanotubes (SWNT) are fitted by means of quantum chemistry calculations with considering the periodic boundary conditions. The nonbonded parameters between carbon atoms and hydrogen atoms are fitted as well. All the fitted parameters are verified by comparing to quantum chemistry results and by calculating Young's modulus. Adsorption of Hydrogen molecules are then carried out on a bundle of self-assembled SWNTs. The adsorption isotherms are consistent to the Freundlich equation. Both hydrogen molecules adsorbed outside and inside the SWNTs are counted. According to our result, hydrogen molecules adsorbed inside the SWNTs are more stable at a relatively high temperature and are playing an important part in total amount of the adsorbed molecules. While C(10,10) have the highest adsorption capacities in most of the temperatures, hydrogen molecules inside C(5,5) are the most stable of all the four kinds of SWNTs. Thus, balancing adsorption capacities and strength of interaction can be important in choosing SWNT for gas adsorption. Besides, we deduct an equation that can describe the relation between hydrogen pressure and amount of SWNTs based on our simulation results. The hydrogen pressure may decrease by adding SWNTs in the system. The fitting method in our system is valid to SWNTs and can be tested in further studies of similar systems. © 2018 Wiley Periodicals, Inc.

15.
Biopolymers ; 110(2): e23257, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30664251

RESUMEN

Ceritinib, an advanced anaplastic lymphoma kinase (ALK) next-generation inhibitor, has been proved excellent antitumor activity in the treatment of ALK-associated cancers. However, the accumulation of acquired resistance mutations compromise the therapeutic efficacy of ceritinib. Despite abundant mutagenesis data, the structural determinants for reduced ceritinib binding in mutants remains elusive. Focusing on the G1123S and F1174C mutations, we applied molecular dynamics (MD) simulations to study possible reasons for drug resistance caused by these mutations. The MD simulations predict that the studied mutations allosterically impact the configurations of the ATP-binding pocket. An important hydrophobic cluster is identified that connects P-loop and the αC-helix, which has effects on stabilizing the conformation of ATP-binding pocket. It is suggested, in this study, that the G1123S and F1174C mutations can induce the conformational change of P-loop thereby causing the reduced ceritinib affinity and causing drug resistance.


Asunto(s)
Quinasa de Linfoma Anaplásico/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Pirimidinas/metabolismo , Sulfonas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Quinasa de Linfoma Anaplásico/genética , Sitios de Unión , Resistencia a Antineoplásicos , Humanos , Mutagénesis Sitio-Dirigida , Neoplasias/tratamiento farmacológico , Análisis de Componente Principal , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Terciaria de Proteína , Pirimidinas/química , Pirimidinas/uso terapéutico , Sulfonas/química , Sulfonas/uso terapéutico
16.
J Theor Biol ; 472: 27-35, 2019 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-30978352

RESUMEN

Transcriptional enhancer activation domain (TEAD) proteins are the downstream transcriptional factor of the Hippo pathway. The transcription co-activators Yes-associated protein (YAP) and its paralog transcription co-activators with PDZ-binding motif (TAZ), binding to TEAD to promote transcription of genes in cell proliferation and anti-apoptosis, are key effectors of the Hippo pathway. TEAD4, one member of TEAD proteins, is specifically required in embryo implantation. The recently reported crystal structure of TEAD4-TAZ complex (PDB Code 5GN0) in mouse reveals that the interactions between the two helices of YAP/TAZ and TEAD4 are highly conserved. Point mutation of the residue Tyr422 of TEAD4 protein would disrupt the relevant hydrogen bond and even abolish the interaction. However, detailed information affected by the mutation at the atom level are still unrevealed. Molecular dynamics (MD) simulations and the molecular mechanics/Generalized-Born surface area (MM/GBSA) free energy calculations were used to explore the effects of mutation Tyr422Ala on the structural flexibility and conformational dynamics. The non-polar interactions play an indispensable role in the binding process of TEAD4 and YAP/TAZ. The helices α1 and α2 of YAP/TAZ provide a primary function to anchor YAP/TAZ well bound to TEAD4. The mutation Tyr422Ala disrupts the hydrogen-bonding network but do not obviously influence the secondary structure stability of TEAD4. The binding conformation of YAP/TAZ distorted by decreased non-polar interaction and the lost hydrogen bonds would lead to reduced interaction activity. The present study would provide important insights into the structure-function relationships of TEAD protein and give a new explanation for the affinity of YAP/TAZ with TEAD.


Asunto(s)
Simulación de Dinámica Molecular , Mutación/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Animales , Enlace de Hidrógeno , Ratones , Unión Proteica , Estructura Secundaria de Proteína , Termodinámica , Factores de Transcripción/química
17.
J Chem Inf Model ; 59(4): 1554-1562, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30884225

RESUMEN

Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of three intermediate states in the binding process. The analysis of the simulation trajectories demonstrates that, in the intermediate structures, KAR1 is stabilized by some hydrophobic residues (Phe26, Phe134, Leu142, Trp153, Phe157, Leu160, Phe194), along with several bridging water molecules, and meanwhile, the significant shifting occurs in the local conformation of the protein as the ligand's binding. A series of the residues (Gln141-Phe157) on the so-called "cap domain" are proposed to be responsible for capturing the ligand at the initial stage of the binding. Besides, the changes of the ligand's poses are also quantitatively characterized by the proper choice of the coordinate system. Our work will contribute to the more penetrating understanding of the ligand binding process and the receptor affinity difference between several members in the KAR family and help design new, more effective germination stimulants.


Asunto(s)
Germinación , Simulación de Dinámica Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , Termodinámica
18.
J Cell Biochem ; 119(9): 7719-7728, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29878401

RESUMEN

During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain-containing protein 4 (BRD4) in hydrogen peroxide (H2 O2 )-stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2 O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2 O2 -induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2 O2 . Meanwhile, depletion of BRD4 led to repress the oxidative stress-induced apoptosis of chondrocytes triggered by H2 O2 accompanied by an increase in the expression of anti-apoptotic Bcl-2 and a decrease in the expression of pro-apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM-degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5). More importantly, inhibition of BRD4-activated NF-E2-related factor 2 (Nrf2)-heme oxygenase-1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2 O2 -stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress-mediated apoptosis and cartilage matrix degeneration occurred through Nrf2-heme oxygenase-1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.


Asunto(s)
Condrocitos/citología , Peróxido de Hidrógeno/efectos adversos , Proteínas Nucleares/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Animales , Azepinas/farmacología , Supervivencia Celular , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/genética , ARN Interferente Pequeño/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Triazoles/farmacología , Regulación hacia Arriba/efectos de los fármacos
19.
J Mol Recognit ; 31(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28990233

RESUMEN

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors related with the onset and progression of solid tumors. Studies demonstrated a class of tetrazole containing chiral inhibitors could stereoselectively disrupt the HIF-2 dimerization and reduce the target gene expression. However, the dynamical features and structural motifs of the HIF-2 heterodimer caused by the binding of enantiomers have not been rationalized at the atomistic level. In this work, molecular dynamics (MD) simulations combined with adaptive steered MD (ASMD) simulations were used to investigate stereoselective interrupting mechanism of HIF-2. Our results decipher that the binding of ligand A (S, R)-24 begets the significant conformation changes of ß-sheets and interrupts the HIF-2α/ARNT heterodimerization, which may be attributed to the disruption of the hydrogen bond and salt bridge interactions formed by the 4 foremost residues (Asp240, Arg247, Glu362, and Arg366) and the destruction of hydrophobic interactions on the binding interface. By contrast, the binding of ligand B (R, S)-24 does not disrupt protein dimerization and causes the motion of Fα helix in HIF-2α PAS-B domain to further change the major tunnel for ligand ingress and engress. The present work provides important molecular-level insight into the effect of the binding enantiomers on HIF-2 heterodimerization and bridges the gap between theory and the experimental results, which may conduce to develop highly potent antagonists for intervening the HIF-2-driven tumors.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Secuencias de Aminoácidos , Dimerización , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estereoisomerismo , Termodinámica
20.
J Mol Recognit ; 31(10): e2730, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29797434

RESUMEN

Targeting transcription factors HIF-2 is currently considered to be the most direct way for the therapy of clear cell renal cell carcinoma. The preclinical inhibitor PT2399 and artificial inhibitor 0X3 have been identified as promising on-target inhibitors to inhibit the heterodimerization of HIF-2. However, the inhibition mechanism of PT2399 and 0X3 on HIF-2 remains unclear. To this end, molecular dynamics (MD) simulations and molecular docking were applied to investigate the effects of 2 inhibitors on structural motifs and heterodimerization of HIF-2. Our simulation results reveal that the binding of inhibitors disrupts the crucial hydrogen bond and hydrophobic interactions of interdomain of HIF-2 heterodimer due to the local conformational changes of binding interface, confirming the hypothesis that the perturbation of few residues is sufficient to disrupt the heterodimerization of HIF-2. In addition, it can be found that PT2399 with dominant substituents (cyano, fluorine, sulfuryl, and hydroxyl) is more preferred than 0X3 as HIF-2 inhibitor and these substituents play a crucial role in involving more hydrogen bond interactions with residues of interface and then cause the larger structural change of protein. This study may provide a deeper atomic-level insight into the effect of on-target inhibitors on HIF-2 heterodimer, which is expected to contribute to further rational design of effective clear cell renal cell carcinoma drugs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Indanos/química , Simulación de Dinámica Molecular , Sulfonas/química , Línea Celular Tumoral , Dimerización , Humanos , Enlace de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA