Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 590(7845): 262-267, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568822

RESUMEN

Steels with sub-micrometre grain sizes usually possess high toughness and strength, which makes them promising for lightweighting technologies and energy-saving strategies. So far, the industrial fabrication of ultrafine-grained (UFG) alloys, which generally relies on the manipulation of diffusional phase transformation, has been limited to steels with austenite-to-ferrite transformation1-3. Moreover, the limited work hardening and uniform elongation of these UFG steels1,4,5 hinder their widespread application. Here we report the facile mass production of UFG structures in a typical Fe-22Mn-0.6C twinning-induced plasticity steel by minor Cu alloying and manipulation of the recrystallization process through the intragranular nanoprecipitation (within 30 seconds) of a coherent disordered Cu-rich phase. The rapid and copious nanoprecipitation not only prevents the growth of the freshly recrystallized sub-micrometre grains but also enhances the thermal stability of the obtained UFG structure through the Zener pinning mechanism6. Moreover, owing to their full coherency and disordered nature, the precipitates exhibit weak interactions with dislocations under loading. This approach enables the preparation of a fully recrystallized UFG structure with a grain size of 800 ± 400 nanometres without the introduction of detrimental lattice defects such as brittle particles and segregated boundaries. Compared with the steel to which no Cu was added, the yield strength of the UFG structure was doubled to around 710 megapascals, with a uniform ductility of 45 per cent and a tensile strength of around 2,000 megapascals. This grain-refinement concept should be extendable to other alloy systems, and the manufacturing processes can be readily applied to existing industrial production lines.

2.
Nano Lett ; 21(4): 1822-1830, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33560855

RESUMEN

Nanostructured all-inorganic metal halide perovskites have attracted considerable attention due to their outstanding photonic and optoelectronic properties. Particularly, they can exhibit room-temperature exciton-polaritons (EPs) capable of confining electromagnetic fields down to the subwavelength scale, enabling efficient light harvesting and guiding. However, a real-space nanoimaging study of the EPs in perovskite crystals is still absent. Additionally, few studies focused on the ambient-pressure and reliable fabrication of large-area CsPbBr3 microsheets. Here, CsPbBr3 orthorhombic microsheet single crystals were successfully synthesized under ambient pressure. Their EPs were examined using a real-space nanoimaging technique, which reveal EP waveguide modes spanning the visible to near-infrared spectral region. The EPs exhibit a sufficient long propagation length of over 16 µm and a very low propagation loss of less than 0.072 dB·µm-1. These results demonstrate the potential applications of CsPbBr3 microsheets as subwavelength waveguides in integrated optics.

3.
Nat Mater ; 18(1): 55-61, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542093

RESUMEN

Transition metal dichalcogenides have attracted attention as potential building blocks for various electronic applications due to their atomically thin nature and polymorphism. Here, we report an electric-field-induced structural transition from a 2H semiconducting to a distorted transient structure (2Hd) and orthorhombic Td conducting phase in vertical 2H-MoTe2- and Mo1-xWxTe2-based resistive random access memory (RRAM) devices. RRAM programming voltages are tunable by the transition metal dichalcogenide thickness and show a distinctive trend of requiring lower electric fields for Mo1-xWxTe2 alloys versus MoTe2 compounds. Devices showed reproducible resistive switching within 10 ns between a high resistive state and a low resistive state. Moreover, using an Al2O3/MoTe2 stack, On/off current ratios of 106 with programming currents lower than 1 µA were achieved in a selectorless RRAM architecture. The sum of these findings demonstrates that controlled electrical state switching in two-dimensional materials is achievable and highlights the potential of transition metal dichalcogenides for memory applications.

4.
Nano Lett ; 17(5): 2825-2832, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28418675

RESUMEN

Electric-field (E-field) control of magnetism enabled by multiferroic materials has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme has only been demonstrated at room temperature using BiFeO3 films grown on DyScO3, a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BiFeO3. Here, we demonstrate reversible electric-field-induced switching of the magnetic state of the Co layer in Co/BiFeO3 (BFO) (001) thin film heterostructures fabricated on (001) SrTiO3 (STO) substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches back and forth 45° between the (100) and the (110) crystallographic directions of STO as a result of alternating application of positive and negative voltage pulses between the patterned top Co electrode layer and the (001) SrRuO3 (SRO) layer on which the ferroelectric BFO is epitaxially grown. The coercivity (HC) of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. A mechanism based on the intrinsic magnetoelectric coupling in multiferroic BFO involving projection of antiferromagnetic G-type domains is used to explain the observation. We have also measured the exact canting angle of the G-type domain in strained BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and nonvolatile magnetoelectronic devices.

5.
Nat Mater ; 13(1): 31-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24193663

RESUMEN

Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm(-1) at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides.

6.
Inorg Chem ; 54(7): 3477-84, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25756843

RESUMEN

A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 µm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.


Asunto(s)
Cerio/química , Cobalto/química , Suministros de Energía Eléctrica , Estroncio/química , Cristalografía por Rayos X , Electrodos , Oxidación-Reducción , Temperatura
7.
Adv Sci (Weinh) ; : e2308574, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943261

RESUMEN

The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare-earth-free high magnetic anisotropy materials in single-phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2 substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post-deposition rapid thermal annealing (RTA), the films exhibit a single face-centered-cubic phase, with an almost 40-fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a single L10 high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA.

8.
Nat Commun ; 15(1): 13, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253559

RESUMEN

Data-centric applications are pushing the limits of energy-efficiency in today's computing systems, including those based on phase-change memory (PCM). This technology must achieve low-power and stable operation at nanoscale dimensions to succeed in high-density memory arrays. Here we use a novel combination of phase-change material superlattices and nanocomposites (based on Ge4Sb6Te7), to achieve record-low power density ≈ 5 MW/cm2 and ≈ 0.7 V switching voltage (compatible with modern logic processors) in PCM devices with the smallest dimensions to date (≈ 40 nm) for a superlattice technology on a CMOS-compatible substrate. These devices also simultaneously exhibit low resistance drift with 8 resistance states, good endurance (≈ 2 × 108 cycles), and fast switching (≈ 40 ns). The efficient switching is enabled by strong heat confinement within the superlattice materials and the nanoscale device dimensions. The microstructural properties of the Ge4Sb6Te7 nanocomposite and its high crystallization temperature ensure the fast-switching speed and stability in our superlattice PCM devices. These results re-establish PCM technology as one of the frontrunners for energy-efficient data storage and computing.

9.
Nanoscale ; 15(23): 9964-9972, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37266913

RESUMEN

Wide bandgap semiconductors such as gallium oxide (Ga2O3) have attracted much attention for their use in next-generation high-power electronics. Although single-crystal Ga2O3 substrates can be routinely grown from melt along various orientations, the influence of such orientations has been seldom reported. Further, making rectifying p-n diodes from Ga2O3 has been difficult due to lack of p-type doping. In this study, we fabricated and optimized 2D/3D vertical diodes on ß-Ga2O3 by varying the following three factors: substrate planar orientation, choice of 2D material and metal contacts. The quality of our devices was validated using high-temperature dependent measurements, atomic-force microscopy (AFM) techniques and technology computer-aided design (TCAD) simulations. Our findings suggest that 2D/3D ß-Ga2O3 vertical heterojunctions are optimized by substrate planar orientation (-201), combined with 2D WS2 exfoliated layers and Ti contacts, and show record rectification ratios (>106) concurrently with ON-Current density (>103 A cm-2) for application in power rectifiers.


Asunto(s)
Electrónica , Semiconductores , Microscopía de Fuerza Atómica
10.
ACS Nano ; 17(7): 6745-6753, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995303

RESUMEN

Electric field control of the exchange bias effect across ferromagnet/antiferromagnet (FM/AF) interfaces has offered exciting potentials for low-energy-dissipation spintronics. In particular, the solid-state magneto-ionic means is highly appealing as it may allow reconfigurable electronics by transforming the all-important FM/AF interfaces through ionic migration. In this work, we demonstrate an approach that combines the chemically induced magneto-ionic effect with the electric field driving of nitrogen in the Ta/Co0.7Fe0.3/MnN/Ta structure to electrically manipulate exchange bias. Upon field-cooling the heterostructure, ionic diffusion of nitrogen from MnN into the Ta layers occurs. A significant exchange bias of 618 Oe at 300 K and 1484 Oe at 10 K is observed, which can be further enhanced after a voltage conditioning by 5 and 19%, respectively. This enhancement can be reversed by voltage conditioning with an opposite polarity. Nitrogen migration within the MnN layer and into the Ta capping layer cause the enhancement in exchange bias, which is observed in polarized neutron reflectometry studies. These results demonstrate an effective nitrogen-ion based magneto-ionic manipulation of exchange bias in solid-state devices.

11.
Adv Mater ; 35(21): e2210916, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36848627

RESUMEN

2D semiconducting materials have immense potential for future electronics due to their atomically thin nature, which enables better scalability. While the channel scalability of 2D materials has been extensively studied, the current understanding of contact scaling in 2D devices is inconsistent and oversimplified. Here physically scaled contacts and asymmetrical contact measurements (ACMs) are combined to investigate the contact scaling behavior in 2D field-effect transistors. The ACMs directly compare electron injection at different contact lengths while using the exact same MoS2  channel, eliminating channel-to-channel variations. The results show that scaled source contacts can limit the drain current, whereas scaled drain contacts do not. Compared to devices with long contact lengths, devices with short contact lengths (scaled contacts) exhibit larger variations, 15% lower drain currents at high drain-source voltages, and a higher chance of early saturation and negative differential resistance. Quantum transport simulations reveal that the transfer length of Ni-MoS2  contacts can be as short as 5 nm. Furthermore, it is clearly identified that the actual transfer length depends on the quality of the metal-2D interface. The ACMs demonstrated here will enable further understanding of contact scaling behavior at various interfaces.

12.
Adv Mater ; 35(11): e2207622, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36538624

RESUMEN

Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.

13.
Adv Mater ; 35(30): e2300107, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36720651

RESUMEN

Phase-change memory (PCM) is a promising candidate for neuro-inspired, data-intensive artificial intelligence applications, which relies on the physical attributes of PCM materials including gradual change of resistance states and multilevel operation with low resistance drift. However, achieving these attributes simultaneously remains a fundamental challenge for PCM materials such as Ge2 Sb2 Te5 , the most commonly used material. Here bi-directional gradual resistance changes with ≈10× resistance window using low energy pulses are demonstrated in nanoscale PCM devices based on Ge4 Sb6 Te7 , a new phase-change nanocomposite material . These devices show 13 resistance levels with low resistance drift for the first 8 levels, a resistance on/off ratio of ≈1000, and low variability. These attributes are enabled by the unique microstructural and electro-thermal properties of Ge4 Sb6 Te7 , a nanocomposite consisting of epitaxial SbTe nanoclusters within the Ge-Sb-Te matrix, and a higher crystallization but lower melting temperature than Ge2 Sb2 Te5 . These results advance the pathway toward energy-efficient analog computing using PCM.

14.
ACS Nano ; 17(23): 23692-23701, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37861986

RESUMEN

Quantum confinement of two-dimensional excitons in van der Waals materials via electrostatic trapping, lithographic patterning, Moiré potentials, and chemical implantation has enabled significant advances in tailoring light emission from nanostructures. While such approaches rely on complex preparation of materials, natural edges are a ubiquitous feature in layered materials and provide a different approach for investigating quantum-confined excitons. Here, we observe that certain edge sites of monolayer black phosphorus (BP) strongly localize the intrinsic quasi-one-dimensional excitons, yielding sharp spectral lines in photoluminescence, with nearly an order of magnitude line width reduction. Through structural characterization of BP edges using transmission electron microscopy and first-principles GW plus Bethe-Salpeter equation (GW-BSE) calculations of exemplary BP nanoribbons, we find that certain atomic reconstructions can strongly quantum-confine excitons resulting in distinct emission features, mediated by local strain and screening. We observe linearly polarized luminescence emission from edge reconstructions that preserve the mirror symmetry of the parent BP lattice, in agreement with calculations. Furthermore, we demonstrate efficient electrical switching of localized edge excitonic luminescence, whose sites act as excitonic transistors for emission. Localized emission from BP edges motivates exploration of nanoribbons and quantum dots as hosts for tunable narrowband light generation, with future potential to create atomic-like structures for quantum information processing applications as well as exploration of exotic phases that may reside in atomic edge structures.

15.
Nat Commun ; 14(1): 6691, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872165

RESUMEN

Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings competing to align spins in different configurations, and thus making the material design and experimental implementation extremely challenging. A single material platform with concurrent ferromagnetism and superconductivity is actively pursued. In this paper, we fabricate van der Waals Josephson junctions made with iron-based superconductor Fe(Te,Se), and report the global device-level transport signatures of interfacial ferromagnetism emerging with superconducting states for the first time. Magnetic hysteresis in the junction resistance is observed only below the superconducting critical temperature, suggesting an inherent correlation between ferromagnetic and superconducting order parameters. The 0-π phase mixing in the Fraunhofer patterns pinpoints the ferromagnetism on the junction interface. More importantly, a stochastic field-free superconducting diode effect was observed in Josephson junction devices, with a significant diode efficiency up to 10%, which unambiguously confirms the spontaneous time-reversal symmetry breaking. Our work demonstrates a new way to search for topological superconductivity in iron-based superconductors for future high Tc fault-tolerant qubit implementations from a device perspective.

16.
Adv Mater ; 35(21): e2300640, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37012602

RESUMEN

Quantum critical points separating weak ferromagnetic and paramagnetic phases trigger many novel phenomena. Dynamical spin fluctuations not only suppress the long-range order, but can also lead to unusual transport and even superconductivity. Combining quantum criticality with topological electronic properties presents a rare and unique opportunity. Here, by means of ab initio calculations and magnetic, thermal, and transport measurements, it is shown that the orthorhombic CoTe2 is close to ferromagnetism, which appears suppressed by spin fluctuations. Calculations and transport measurements reveal nodal Dirac lines, making it a rare combination of proximity to quantum criticality and Dirac topology.

17.
ACS Nano ; 16(4): 5316-5324, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35290014

RESUMEN

Two-dimensional (2D) van der Waals materials are subject to mechanical deformation and thus forming bubbles and wrinkles during exfoliation and transfer. A lack of interfacial "flatness" has implications for interface properties, such as those formed by metal contacts or insulating layers. Therefore, an understanding of the detailed properties of 2D interfaces, especially their flatness under different conditions, is of high importance. Here we use cross-sectional scanning transmission electron microscopy (STEM) to investigate various 2D interfaces (2D-2D and 3D-2D) under the effects of stacking, atomic layer deposition (ALD), and metallization. We characterize and compare the flatness of the hBN-2D and metal-2D interfaces down to angstrom resolution. It is observed that the dry transfer of hexagonal boron nitride (hBN) can dramatically alter the interface structure. When characterizing 3D metal-2D interfaces, we find that Ni-MoS2 interfaces are more uneven and have larger nanocavities compared to other metal-2D interfaces. The electrical characteristics of a MoS2-based field-effect transistor are correlated to the interfacial transformation in the contact and channel regions. The device transconductance is improved by 40% after the hBN encapsulation, likely due to the interface interactions at both the channel and contacts. Overall, these observations reveal the intricacy of 2D interfaces and their dependence on the fabrication processes.

18.
ACS Appl Mater Interfaces ; 14(37): 42683-42691, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074957

RESUMEN

Terahertz (THz) technologies have been of interest for many years due to the variety of applications including gas sensing, nonionizing imaging of biological systems, security and defense, and so forth. To date, scientists have used different classes of materials to perform different THz functions. However, to assemble an on-chip THz integrated system, we must understand how to integrate these different materials. Here, we explore the growth of Bi2Se3, a topological insulator material that could serve as a plasmonic waveguide in THz integrated devices, on technologically important GaAs(001) substrates. We explore surface treatments and find that an atomically smooth GaAs surface is critical to achieving high-quality Bi2Se3 films despite the relatively weak film/substrate interaction. Calculations indicate that the Bi2Se3/GaAs interface is likely selenium-terminated and shows no evidence of chemical bonding between the Bi2Se3 and the substrate. These results are a guide for integrating van der Waals materials with conventional semiconductor substrates and serve as the first steps toward achieving an on-chip THz integrated system.

19.
ACS Nano ; 16(10): 17336-17346, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36126321

RESUMEN

In transport, the topological Hall effect (THE) presents itself as nonmonotonic features (or humps and dips) in the Hall signal and is widely interpreted as a sign of chiral spin textures, like magnetic skyrmions. However, when the anomalous Hall effect (AHE) is also present, the coexistence of two AHEs could give rise to similar artifacts, making it difficult to distinguish between genuine THE with AHE and two-component AHE. Here, we confirm genuine THE with AHE by means of transport and magneto-optical Kerr effect (MOKE) microscopy, in which magnetic skyrmions are directly observed, and find that genuine THE occurs in the transition region of the AHE. In sharp contrast, the artifact "THE" or two-component AHE occurs well beyond the saturation of the "AHE component" (under the false assumption of THE + AHE). Furthermore, we distinguish artifact "THE" from genuine THE by three methods: (1) minor loops, (2) temperature dependence, and (3) gate dependence. Minor loops of genuine THE with AHE are always within the full loop, while minor loops of the artifact "THE" may reveal a single loop that cannot fit into the "AHE component". In addition, the temperature or gate dependence of the artifact "THE" may also be accompanied by a polarity change of the "AHE component", as the nonmonotonic features vanish, while the temperature dependence of genuine THE with AHE reveals no such change. Our work may help future researchers to exercise caution and use these methods for careful examination in order to ascertain the genuine THE.

20.
Nat Commun ; 11(1): 5966, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235197

RESUMEN

Active learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools. This robot science enables science-over-the-network, reducing the economic impact of scientists being physically separated from their labs. The real-time closed-loop, autonomous system for materials exploration and optimization (CAMEO) is implemented at the synchrotron beamline to accelerate the interconnected tasks of phase mapping and property optimization, with each cycle taking seconds to minutes. We also demonstrate an embodiment of human-machine interaction, where human-in-the-loop is called to play a contributing role within each cycle. This work has resulted in the discovery of a novel epitaxial nanocomposite phase-change memory material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA