RESUMEN
Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.
Asunto(s)
Mastitis , Infecciones Estafilocócicas , Femenino , Humanos , Ratas , Animales , Staphylococcus aureus/fisiología , Proteómica , Ácido Araquidónico/metabolismo , Mastitis/microbiología , Mastitis/patología , Mastitis/veterinaria , Inflamación/metabolismo , Redes y Vías Metabólicas , Glándulas Mamarias Animales/metabolismo , Infecciones Estafilocócicas/metabolismoRESUMEN
Polymer waveguide devices have attracted increasing interest in several rapidly developing areas of broadband communications since they are easily adaptable to on-chip integration and promise low propagation losses. As a key member of the waveguide gain medium, lanthanide doped nanoparticles have been intensively studied to improve the downconversion luminescence. However, current research efforts are almost confined to erbium-doped nanoparticles and amplifiers operating at the C-band; boosting the downconversion luminescence of Tm3+ for S-band optical amplification still remains a challenge. Here we report a Tb3+-induced deactivation control to enhance Tm3+ downconversion luminescence in a stoichiometric Yb lattice without suffering from concentration quenching. We also demonstrate their potential application in an S-band waveguide amplifier and record a maximum optical gain of 18 dB at 1464 nm. Our findings provide valuable insights into the fundamental understanding of deactivation-controlled luminescence enhancement and open up a new avenue toward the development of an S-band polymer waveguide amplifier with high gain.
RESUMEN
Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a CâC bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this CâC bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.
RESUMEN
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Asunto(s)
Ferroptosis , Inmunoterapia , Neoplasias , Ferroptosis/genética , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Inmunoterapia/métodos , Animales , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulación Neoplásica de la Expresión Génica , Procesamiento Postranscripcional del ARN , Metilación de ARNRESUMEN
Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.
Asunto(s)
Citrus , Lignina , Lignina/metabolismo , Citrus/metabolismo , Citrus/genética , Jugos de Frutas y Vegetales/análisis , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Peróxido de Hidrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Frutas/metabolismo , Frutas/genética , Antioxidantes/metabolismoRESUMEN
2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.
RESUMEN
Developing cost-effective, durable bifunctional electrocatalysts is crucial but remains challenging due to slow hydrogen/oxygen evolution reaction (HER/OER) kinetics in water electrolysis. Herein, a combined engineering strategy of phosphorous vacancy (Vp) and spontaneous built-in electric field (BIEF) is proposed to design novel highly-conductive Co-doped MoP@MXene heterostructures with phosphorous vacancy (Vp-Co-MoP@MXene). Wherein, Co doping regulates the surface electronic structure and charge re-distribution of MoP, Vp induces more defects and active sites, while BIEF accelerates the interfacial charge transfer rate between Vp-Co-MoP and MXene. Therefore, the synergistic integration of Vp-Co-MoP/MXene efficiently decreases activation energy and kinetic barrier, thus promoting its intrinsically catalytic activity and structural stability. Consequently, the Vp-Co-MoP@MXene catalyst displays low overpotentials of 102.3/196.5 and 265.0/320.0 mV at 10/50 mA cm-2 for HER and OER, respectively. Notably, two-electrode electrolyzers with the Vp-Co-MoP@MXene bifunctional catalysts to achieve 10/50 mA cm-2, only need low-cell voltages of 1.57/1.64 V in alkaline media. Besides, experimental and theoretical results confirm that the hetero-structure effectively reduces hydrogen adsorption free energy and rate-determining-step energy barrier of OER intermediates, thereby greatly boosting its intrinsically catalytic activity. This work verifies an effective strategy to fabricate efficient non-precious bifunctional electro-catalysts for water splitting via combination engineering of phosphorous vacancy, cation doping, and BIEF.
RESUMEN
PURPOSE: An automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality. METHODS: The method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations. VD is evaluated as the Mahalanobis distance between the local velocity measurement and the local error distribution. The uncertainty model is validated synthetically and tested in vitro under different flow resolutions and noise levels. The VD's application is demonstrated on two in vivo thoracic vasculature 4D flow datasets. RESULTS: Synthetic results show the proposed uncertainty quantification method is sensitive to aliased regions across various velocity-to-noise ratios and assesses velocity error correlations in four- and six-point acquisitions with correlation errors at or under 3.2%. In vitro results demonstrate the method's sensitivity to spatial resolution, venc settings, partial volume effects, and phase wrapping error sources. Applying VD to assess in vivo 4D flow MRI in the aorta demonstrates the expected increase in measured velocity quality with contrast administration and systolic flow. CONCLUSION: The proposed 4D flow MRI uncertainty quantification method assesses velocity measurement error owing to sources including noise, intravoxel phase dispersion, and velocity aliasing. This method enables rigorous comparison of 4D flow MRI datasets obtained in longitudinal studies, across patient populations, and with different MRI systems.
RESUMEN
Bone marrow mesenchymal stem cells (BMSCs) are indispensable cells constituting the bone marrow microenvironment that are generally recognized as being involved in the development and progression of osteosarcoma (OS). To explore whether mTORC2 signaling inhibition in BMSCs suppressed OS growth and tumor-caused bone destruction, 3-month-old littermates genotyped Rictorflox/flox or Prx1-cre; Rictorflox/flox (with same gender) were injected with K7M2 cells in the proximal tibia. After 40 days, bone destruction was alleviated in Prx1-cre; Rictorflox/flox mice, as observed on X-ray and micro-CT. This was accompanied by decreased serum N-terminal propeptide of procollagen type I (PINP) levels and reduced tumor bone formation in vivo. Interactions between K7M2 and BMSCs were studied in vitro. Rictor-deficient BMSCs, which were cultured in tumor-conditioned medium (TCM), caused reduced bone proliferation and suppressed osteogenic differentiation. Moreover, compared with the control group, K7M2 cells cultured in BCM (culture medium extracted from Rictor-deficient BMSCs) displayed less proliferation, migration, and invasion, and attenuated osteogenic activity. Forty types of cytokines were then analyzed by mouse cytokine array and decreased levels CCL2/3/5 and interleukin-16 were detected in Rictor-deficient BMSCs. These results suggested that inhibition of mTORC2 (Rictor) signaling pathway in BMSCs exerted anti-OS effects through 2 mechanisms: (1) by suppressing the proliferation and osteogenic differentiation of BMSCs induced by OS to alleviate bone destruction; (2) by reducing the secretion of cytokines by BMSCs, which are closely related to OS cell growth, migration, invasion, and tumorigenic osteogenesis.
Asunto(s)
Neoplasias Óseas , Células Madre Mesenquimatosas , Osteosarcoma , Ratones , Animales , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Células de la Médula Ósea , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Citocinas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Células Cultivadas , Osteosarcoma/metabolismo , Microambiente TumoralRESUMEN
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in premenopausal women, often linked to abdominal obesity, insulin resistance, and metabolic issues. With its heterogeneous nature, PCOS treatment should be tailored to individual symptoms and patient preferences. This study examines collaboration networks among countries, institutions, authors, references, and journals related to PCOS treatment. METHODS: Web of Science data was analyzed using VOSviewer and CiteSpace for bibliometric visualization. Chinese and Western medicine treatments for PCOS were reviewed, emphasizing symptom-targeted solutions. RESULTS: Data from 4682 records authored by 400 individuals from 515 institutes in 62 countries revealed China as the leading contributor. Notable authors include Monash University and Richard S. Legro. Common research themes include adipocytes, inflammation, insulin sensitivity, oxidative stress, and the gut microbiome. Tailoring treatment to individual needs is essential, focusing on hyperandrogenism, ovulation, and insulin resistance, with lifestyle counseling to address obesity. CONCLUSION: This bibliometric analysis provides valuable insights into the research status of PCOS treatment. China has made significant contributions, and complementary and alternative therapies, such as traditional Chinese medicine and acupuncture, have also shown beneficial effects recently. The research on inflammation, oxidative stress, and the gut microbiome may provide new targets and strategies for the treatment of PCOS. The recognition of the metabolic problems in PCOS patients facilitates the formulation of more personalized treatment plans to improve the prognosis of patients.
Asunto(s)
Bibliometría , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/terapia , Humanos , Femenino , Resistencia a la InsulinaRESUMEN
BACKGROUND: Obesity induces insulin resistance and chronic inflammation, impacting human health. The relationship between obesity, gut microbiota, and regulatory mechanisms has been studied extensively. Dendrobium officinale polysaccharide (DOP), a traditional Chinese herbal medicine, potentially reduces insulin resistance. However, the mechanism through which DOP affects gut microbiota and alleviates obesity-induced insulin resistance in rats requires further investigation. RESULTS: The current study aimed to assess the impact of DOP on gut microbiota and insulin resistance in rats on a high-fat diet. The results revealed that DOP effectively reduced blood lipids, glucose disorders, oxidative stress, and inflammatory infiltration in the liver of obese Sprague Dawley rats. This was achieved by downregulating SOCS3 expression and upregulating insulin receptor substrate-1 (IRS-1) by regulating the JAK/STAT/SOCS3 signaling pathway. Notably, DOP intervention enhanced the abundance of beneficial gut microbiota and reduced harmful microbiota. Correlation analysis demonstrated significant associations among intestinal microbiota, SOCS3-mediated IRS-1 expression, and inflammatory factors. CONCLUSION: Dendrobium officinale polysaccharide regulated the gut microbiota, enhanced IRS-1 expression, and mitigated liver injury and insulin resistance due to a high-fat diet. These findings depict the potential anti-insulin resistance properties of DOP and offer further evidence for addressing obesity and its complications. © 2023 Society of Chemical Industry.
Asunto(s)
Dendrobium , Microbioma Gastrointestinal , Resistencia a la Insulina , Ratas , Humanos , Animales , Dendrobium/química , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratas Sprague-Dawley , Polisacáridos/química , Transducción de Señal , Obesidad/tratamiento farmacológico , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismoRESUMEN
G-proteins are intracellular partners of G-protein-coupled receptors. As a member of the G-protein family, GNB1 has been shown to play a pro-cancer role in lung cancer and breast cancer. However, the biological function and detailed mechanisms of GNB1 in hepatocellular carcinoma progression are unclear. In this study, we investigated the effects of GNB1 and its possible mechanism of action in hepatocellular carcinoma (HCC). The clinical significance of GNB1 was evaluated in a large cohort of HCC patients, showing that GNB1 was overexpressed in HCC compared to adjacent normal liver tissues, and increased GNB1 expression was associated with poor prognosis. We also demonstrated that GNB1 enhances cell proliferation, colony formation, and cell migration and invasion in vitro and promotes the epithelial-to-mesenchymal transition process in HCC cells. Tumor xenograft model assay confirmed the oncogenic role of GNB1 in tumorigenicity in nude mice. Activation of P38 signaling was found in the GNB1 overexpressed HCC cells. Further intervention of P38 confirmed it as an important signaling pathway for the oncogenic role of GNB1 in HCC. Moreover, co-immunoprecipitation followed by liquid chromatograph-mass spectrometry identified that GNB1 exerted oncogenic functions via the interaction of BAG2 and activated P38 signaling pathway. Together, our results reveal that GNB1 plays a pivotal oncogenic role in HCC by promoting the P38 pathway via cooperating with BAG2. GNB1 may serve as a prognostic biomarker for patients with HCC.
Asunto(s)
Carcinoma Hepatocelular , Subunidades beta de la Proteína de Unión al GTP , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Ratones Desnudos , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Pronóstico , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/farmacología , Chaperonas Moleculares/metabolismoRESUMEN
Previous work showed that FABP5 inhibitors suppressed the malignant progression of prostate cancer cells, and this suppression might be achieved partially by promoting apoptosis. But the mechanisms involved were not known. Here, we investigated the effect of inhibitors on apoptosis and studied the relevant mechanisms. WtrFABP5 significantly reduced apoptotic cells in 22Rv1 and PC3 by 18% and 42%, respectively. In contrast, the chemical inhibitor SB-FI-26 produced significant increases in percentages of apoptotic cells in 22Rv1 and PC3 by 18.8% (±4.1) and 4.6% (±1.1), respectively. The bio- inhibitor dmrFABP5 also did so by 23.1% (±2.4) and 15.8% (±3.0), respectively, in these cell lines. Both FABP5 inhibitors significantly reduced the levels of the phosphorylated nuclear fatty acid receptor PPARγ, indicating that these inhibitors promoted apoptosis-induction sensitivity of the cancer cells by suppressing the biological activity of PPARγ. Thus, the phosphorylated PPARγ levels were reduced by FABP5 inhibitors, the levels of the phosphorylated AKT and activated nuclear factor kapper B (NFκB) were coordinately altered by additions of the inhibitors. These changes eventually led to the increased levels of cleaved caspase-9 and cleaved caspase-3; and thus, increase in the percentage of cells undergoing apoptosis. In untreated prostate cancer cells, increased FABP5 suppressed the apoptosis by increasing the biological activity of PPARγ, which, in turn, led to a reduced apoptosis by interfering with the AKT or NFκB signaling pathway. Our results suggested that the FABP5 inhibitors enhanced the apoptosis-induction of prostate cancer cells by reversing the biological effect of FABP5 and its related pathway.
Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , PPAR gamma/metabolismo , Línea Celular Tumoral , Apoptosis , Proteínas de Unión a Ácidos Grasos/metabolismoRESUMEN
The development of sustainable technologies for efficient nitrate removal has attracted increasing attention, because excessive nitrate emissions can result in serious environmental, economic, and health effects. Herein, we propose to utilize FeSiBC metallic glass (MG) powders as a potential solution for nitrate removal. In terms of removal efficiency and reusability, our results show that the MG powders, as special zero-valent iron carriers, are 2-3 orders of magnitude more efficient in nitrate removal than the previous studies, while maintaining more than 50% nitrate removal efficiency after 9 cycles of reaction. Moreover, the optimal FeSiBC MG dosage, pH value, and temperature for nitrate removal are determined. The mechanism of nitrate removal is also revealed. The present study offers a promising approach to remediate nitrate, one of the world's most widespread water pollutants.
RESUMEN
Titanium disulfide (TiS2) has drawn considerable attention in materials, physics, and chemistry thanks to its potential applications in batteries, supercapatteries and thermoelectric devices. However, the simplified and controlled synthesis of high-quality TiS2 remains a great challenge. In this study, a straightforward widely accessible approach to the one-step chemical vapor transport (CVT) process is presented. Meanwhile, combining high-pressure (HP) Raman spectroscopy measurements and first-principles calculations, the pressure-induced phase transition of TiS2 from P3Ìm1 phase (phase I) to C2/m phase (phase II) at 16.0 GPa and then to P6Ì2m phase (phase III) at 32.4 GPa was disclosed. The discovery of HP being within the Weyl semi-metallic phase represents a significant advancement towards understanding the electronic topological states, discovering new physical phenomena, developing new electronic devices, and gaining insight into the properties of elementary particles.
RESUMEN
BACKGROUND: Malnutrition is a common complication after stroke and may worsen neurological outcomes for patients. There are still no uniform tools for screening nutritional status for the patients with stroke. We aimed to explore the relationship between the baseline geriatric nutritional risk index (GNRI) and neurological function at the convalescence stage for patients with stroke and assessed the predictive value of the GNRI for adverse neurological outcomes. METHODS: A total of 311 patients with stroke were enrolled retrospectively. Basic information and laboratory results on admission since onset of stroke were collected. The GNRI on admission was calculated and neurological outcomes evaluated by the Barthel index at 1 month after the onset of stroke. Statistical analyses, including correlation coefficient tests, multivariate regression analyses, and receiver operating characteristic (ROC) analyses, were applied in this study. RESULTS: Compared with the good outcome group, the poor outcome group showed a significantly lower GNRI on admission (P < 0.05). GNRI was associated with Barthel index (r = 0.702, P < 0.01). The GNRI was independently correlated with the Barthel index (Standardization ß = 0.721, P < 0.01) and poor outcome 0.885 (95% CIs, 0.855-0.917, P < 0.01) after adjusting for covariates. Compared with no nutritional risk grades (Q4), the OR of GNRI to poor neurological outcome increased across increasing nutritional risk grades of GNRI (OR = 2.803, 95% CIs = 1.330-5.909 in Q3, 7.992, 95% CIs = 3.294-19.387 in Q2 and 14.011, 95% CIs = 3.972-49.426 in Q1, respectively, P for trend < 0.001). The area under ROC curves (AUC) of the GNRI was 0.804, which was larger than that of the NIHSS, BMI, or Albumin (P < 0.01), with an optimal cut-off value of 97.69, sensitivity of 69.51% and specificity of 77.27%. Combined GNRI with NIHSS gained the largest AUC among all the variables (all P < 0.05), with an AUC of 0.855, sensitivity of 84.75 and specificity of 72.73%. CONCLUSIONS: For patients with stroke, higher nutritional risk grades at baseline indicated worse neurological function at the convalescence stage. Compared with NIHSS, BMI, and Albumin, GNRI was a competitive indicator for the risk of poor neurological outcome. The predictive property of GNRI for adverse neurological outcomes might be more powerful when combined with NIHSS.
Asunto(s)
Desnutrición , Accidente Cerebrovascular , Humanos , Anciano , Estudios Transversales , Evaluación Nutricional , Estudios Retrospectivos , Convalecencia , Estado Nutricional , Desnutrición/diagnóstico , Desnutrición/epidemiología , Desnutrición/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Albúminas , Evaluación Geriátrica/métodos , Factores de RiesgoRESUMEN
Food nutrition, function, sensory quality and safety became major concerns to the food industry. As a novel technology application in food industry, low temperature plasma was commonly used in the sterilization of heat sensitive materials and is now widely used. This review provides a detailed study of the latest advancements and applications of plasma technology in the food industry, especially the sterilization field; influencing factors and the latest research progress in recent years are outlined and upgraded. It explores the parameters that influence its efficiency and effectiveness in the sterilization process. Further research trends include optimizing plasma parameters for different food types, investigating the effects on nutritional quality and sensory attributes, understanding microbial inactivation mechanisms, and developing efficient and scalable plasma-based sterilization systems. Additionally, there is growing interest in assessing the overall quality and safety of processed foods and evaluating the environmental sustainability of plasma technology. The present paper highlights recent developments and provides new perspectives for the application of low temperature plasma in various areas, especially sterilization field of the food industry. Low temperature plasma holds great promise for the food industry's sterilization needs. Further research and technological advancements are required to fully harness its potential and ensure safe implementation across various food sectors.
Asunto(s)
Inocuidad de los Alimentos , Gases em Plasma , Esterilización , Frío , Esterilización/métodos , Calidad de los AlimentosRESUMEN
Direction of arrival (DOA) estimation is an important research topic in array signal processing and widely applied in practical engineering. However, when signal sources are highly correlated or coherent, conventional subspace-based DOA estimation algorithms will perform poorly due to the rank deficiency in the received data covariance matrix. Moreover, conventional DOA estimation algorithms are usually developed under Gaussian-distributed background noise, which will deteriorate significantly in impulsive noise environments. In this paper, a novel method is presented to estimate the DOA of coherent signals in impulsive noise environments. A novel correntropy-based generalized covariance (CEGC) operator is defined and proof of boundedness is given to ensure the effectiveness of the proposed method in impulsive noise environments. Furthermore, an improved Toeplitz approximation method combined CEGC operator is proposed to estimate the DOA of coherent sources. Compared to other existing algorithms, the proposed method can avoid array aperture loss and perform more effectively, even in cases of intense impulsive noise and low snapshot numbers. Finally, comprehensive Monte-Carlo simulations are performed to verify the superiority of the proposed method under various impulsive noise conditions.
RESUMEN
Materials with tunable emission colors has attracted increasing interest in both fundamental research and applications. As a key member of light-emitting materials family, lanthanide doped upconversion nanoparticles (UCNPs) have been intensively demonstrated to emit light in any color upon near-infrared excitation. However, realizing the trichromatic emission in UCNPs with a fixed composition remains a great challenge. Here, without excitation pulsed modulation and three different near-infrared pumping, we report an experimental design to fine-control emission in the full color gamut from core-shell-structured UCNPs by manipulating the energy migration through dual-channel pump scheme. We also demonstrate their potential application in full-color display. These findings may benefit the future development of convenient and versatile optical methos for multicolor tuning and open up the possibility of constructing full-color volumetric display systems with high spatiotemporal resolution.
RESUMEN
The spontaneous resolution of racemates, from natural compounds to artificial structures, has long been pursued to shed light on the origin of homochirality in life. Even though diverse synthetic systems have been elegantly devised to elaborate the underlying principles of spontaneous symmetry breaking, their complexity is still unparalleled to the natural masterpieces including DNA helix and proteins, which convey remarkable coalescence at both molecular and supramolecular levels. Here, we report on the spontaneous resolution of a pair of homochiral entities from a racemic mixture of a triply interlocked cage-catenane comprising 720 possible stereoisomers. This cage-catenane comprises six methyldithiane ring-containing linkers (denoted rac-2). As each methyldithiane ring has two chiral centers, it exhibits four possible diastereomers. These otherwise equimolar diastereomers are preferentially differentiated with the equatorial conformers over their axial analogues, leading to the dominant formation of (S, R)-2 and (R, S)-2, i.e., diastereomeric enrichment at the molecular level. This diastereomeric enrichment is unbiasedly transferred from precursor rac-2 to cage-catenane rac-4, from which a pair of homochirals (S, R)6-4 and (R, S)6-4 is narcissistically self-sorted upon crystallization. This powerful symmetry breaking is attributed to a supramolecular synergy of directional π-π stacking with the multivalency of erstwhile weak S···S contacts (with an unusual distance of 3.09 Å) that are cooperatively arranged in a helical fashion. This work highlights the attainability of complex homochiral entities by resorting to coalesced covalent and noncovalent contributions and therefore provides additional clues to the symmetry breaking of sophisticated yet well-defined architectures.