Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38007175

RESUMEN

The physiological response to feeding is important for production aspects that include feed utilization and growth, and the responses require the action of numerous secretory factors. However, as an important aquaculture animal, the secretory response of Pacific White Shrimp (Litopenaeus vannamei) after feeding has not been comprehensively characterized. In this study, transcriptome analysis showed that 3172 differentially expressed genes were involved in the post-feeding response, including 289 new genes not annotated in the L. vannamei reference genome. Subsequently, 715 differentially expressed secretory reference genes and 18 new differentially expressed secretory genes were obtained through the identification of signal peptides in secreted proteins. Functional classification revealed that differentially expressed secretory genes were enriched in pathways pertaining to lipid metabolism (20 genes), carbohydrate metabolism (21 genes), glycan biosynthesis and metabolism (27 genes), digestive system (40 genes), and transport and metabolism (43 genes). The 14 pathways most enriched by differentially expressed secretory genes involved 83 genes, 71 of which encoded enzymes involved in food digestion and metabolism. Specific enzymes such as lipase 3-like and NPC intracellular cholesterol transporter 1-like in lipid metabolism, alpha-amylase-like and glucosylceramidase-like in carbohydrate metabolism, and cysteine proteinase 4-like and trypsin-1-like in the digestive system were found to be differentially expressed. Furthermore, we discovered a new gene, MSTRG.2504, that participates in the digestive system and carbohydrate metabolism. The study provides valuable insights into the secretory response (especially metabolism-related enzymes) to feeding in L. vannamei, uncovering the significant roles of both known and new genes. Furthermore, this study will improve our understanding of the feeding physiology of L. vannamei and provide a reference basis for further feeding endocrine research in the future.


Asunto(s)
Perfilación de la Expresión Génica , Penaeidae , Animales , Expresión Génica , Penaeidae/metabolismo , Alimentos , Transcriptoma
2.
Micromachines (Basel) ; 15(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39064336

RESUMEN

The demodulation phase error will cause the quadrature error to be coupled to the rate output, resulting in performance deterioration of the MEMS gyroscope. To solve this problem, an in-run automatic demodulation phase error compensation method is proposed in this paper. This method applies square wave angular rate input to the gyroscope and automatically identifies the value of the demodulation phase error through the designed automatic identification algorithm. To realize in-run automatic compensation, the demodulation phase error corresponding to the temperature point is measured every 10 °C in the full-temperature environment (-40~60 °C). The relationship between temperature and demodulation phase error is fitted by a third-order polynomial. The temperature is obtained by the temperature sensor and encapsulated in the ceramic packages of the MEMS gyroscope, and the in-run automatic compensation is realized based on the fitting curve. The temperature hysteresis effect on the zero-rate output (ZRO) of the gyroscope is eliminated after compensation. The bias instability (BI) of the three gyroscopes at room temperature (25 °C) is reduced by four to eight times to 0.1°/h, while that at full-temperature environment (-40~60 °C) is reduced by three to four times to 0.1°/h after in-run compensation.

3.
Nat Commun ; 8: 14275, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145433

RESUMEN

Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/ß and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1-p38MAPK signalling pathway in directing Th17 differentiation.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/inmunología , Células Th17/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Oncotarget ; 7(43): 71001-71012, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27589682

RESUMEN

Naïve CD4+T cells differentiate into various T cell subsets depending on the specific cytokine environment. TH9 cells are less well-characterized than other T cell subsets, and factors that control their development and function have only recently been identified. It is now clear that TH9 cells play critical roles in immune-mediated diseases, including allergic airway, autoimmune and inflammatory bowel diseases, and cancer. Thus, the promotion or suppression of TH9 cell differentiation, transcriptional control and function may provide novel treatments for clinical inflammation, autoimmune diseases and tumors.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diferenciación Celular/inmunología , Inflamación/inmunología , Neoplasias/inmunología , Linfocitos T Colaboradores-Inductores/patología , Diferenciación Celular/genética , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Regulación de la Expresión Génica , Humanos , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-24799943

RESUMEN

Inflammation exists throughout the incidence and progression of Alzheimer's disease (AD). Traditional Chinese medicine (TCM) differentiates the pathogenesis of AD as kidney essence deficiency and qi and blood deficiency as well as blood stasis in syndromes, whose action mechanisms are all associated with the intervention in its inflammatory process. Our preliminary studies both in clinic and in vitro have demonstrated that the syndrome of spleen deficiency and fluid retention has also been an important pathogenesis for the incidence and development of AD. Hence, the paper aims to further illustrate the correlation between inflammatory process in AD and the syndrome of spleen deficiency and fluid retention, laying solid foundation for the application of invigorating the spleen and eliminating the dampness in clinic, and enriching the theoretical connotation for AD prevention and treatment in TCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA