Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Hematol ; 103(8): 3015-3027, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38847852

RESUMEN

Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.


Asunto(s)
Resistencia a Antineoplásicos , Histona Desacetilasa 1 , Mesilato de Imatinib , Interleucina-6 , Células Madre Mesenquimatosas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Femenino , Línea Celular Tumoral , Adulto , Apoptosis/efectos de los fármacos , Niño , Adolescente , Cromosoma Filadelfia , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos
2.
Anaerobe ; 85: 102805, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049048

RESUMEN

OBJECTIVES: Anaerobic fungi are critical for nutrient digestion in the yak rumen. Although studies have reported the effects of passage at different time intervals on the community structure of yak rumen anaerobic fungi, it is unknown whether passage culture at different time intervals affects the microbial proteins of rumen anaerobic fungi and their functions. METHODS: Mycelium was obtained using the anaerobic continuous batch culture (CBC) of yak rumen fluid at intervals of 3 d, 5 d and 7 d. Quantitative analysis of fungal proteins and functional analysis was performed using tandem mass tagging (TMT) and bioinformatics. RESULTS: A total of 56 differential proteins (DPs) were found in 5 d vs. 3 d and 7 d vs. 3 d. Gene ontology (GO) enrichment indicated that the up-regulated proteins were mainly involved in biological regulation, cellular process, metabolic process, macromolecular complex, membrane, cell part, organelle, binding, catalytic activity and transporter activity. The downregulated proteins were mainly enriched in metabolic process, cell part, binding and catalytic activity. Furthermore, the downregulated proteins in 7 d vs. 3 d were related to membrane and organelle. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicated that DPs were enriched in 14 pathways in 5 d vs. 3 d and 7 d vs. 3 d, mainly including terpenoid backbone biosynthesis, alaine, aspartate and glutamate metabolism, arginine biosynthesis, hypotaurine, cyanoamino acid, glutathione, ß-alanine, pyrimidine, purine, galactose and propanate metabolism, steroid biosynthesis, ribosome biogenesis in eukaryotes and aminoacyl tRNA biosynthesis. The DPs were enriched in only 2 pathways in 5 d vs 3 d, lysine biosynthesis and cysteine and methionine metabolism. N-glycan biosynthesis and retinol metabolism are only found in the metabolism of DPs in 7 d vs 3 d. CONCLUSIONS: Yak rumen anaerobic fungal proteins are involved in nutrition and stress tolerance during passage at different time intervals.


Asunto(s)
Proteómica , Rumen , Animales , Bovinos , Rumen/microbiología , Anaerobiosis , Hongos/genética , Hongos/metabolismo , Proteínas Fúngicas/metabolismo
3.
Biochem Biophys Res Commun ; 648: 50-58, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36731227

RESUMEN

Diabetic kidney disease (DKD), the most pervasive complication in diabetic patients, has become a major health threat to the aging population. Our previous miRNA profiling identified hsa-miR-223-3p as a dysregulated miRNA in the DKD samples, which may serve as a biomarker for DKD diagnosis. However, the specific mechanism of miR-223-3p in the pathogenesis of DKD remains to be elucidated. In this study, we first verified that miR-223-3p level was significantly decreased in the in vitro cell model and in vivo db/db DKD model, accompanied with endothelial cell damage. Importantly, inhibiting the expression of miR-223-3p exacerbated high-glucose induced damages in Human Umbilical Vein Endothelial Cells (HUVECs) and Human Renal Glomerular Endothelial Cells (HRGECs), while miR-223-3p overexpression showed the opposite effect. We further demonstrated that miR-223-3p associated with IL6T mRNA and attenuated the progression of DKD by suppressing the downstream STAT3 activation, indicative of the implication of miR-223-3p/IL6T/STAT3 axis in the pathogenesis of DKD.


Asunto(s)
Nefropatías Diabéticas , MicroARNs , Anciano , Humanos , Receptor gp130 de Citocinas/metabolismo , Diabetes Mellitus , Nefropatías Diabéticas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Riñón/metabolismo , MicroARNs/metabolismo , Factor de Transcripción STAT3/metabolismo
4.
BMC Nephrol ; 24(1): 305, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853335

RESUMEN

BACKGROUND: There are no reliable molecular targets for early diagnosis and effective treatment in the clinical management of diabetic kidney disease (DKD). To identify novel gene factors underlying the progression of DKD. METHODS: The public transcriptomic datasets of the alloxan-induced DKD model and the streptozotocin-induced DKD model were retrieved to perform an integrative bioinformatic analysis of differentially expressed genes (DEGs) shared by two experimental animal models. The dominant biological processes and pathways associated with DEGs were identified through enrichment analysis. The expression changes of the key DEGs were validated in the classic db/db DKD mouse model. RESULTS: The downregulated and upregulated genes in DKD models were uncovered from GSE139317 and GSE131221 microarray datasets. Enrichment analysis revealed that metabolic process, extracellular exosomes, and hydrolase activity are shared biological processes and molecular activity is altered in the DEGs. Importantly, Hmgcs2, angptl4, and Slco1a1 displayed a consistent expression pattern across the two DKD models. In the classic db/db DKD mice, Hmgcs2 and angptl4 were also found to be upregulated while Slco1a1 was downregulated in comparison to the control animals. CONCLUSIONS: In summary, we identified the common biological processes and molecular activity being altered in two DKD experimental models, as well as the novel gene factors (Hmgcs2, Angptl4, and Slco1a1) which may be implicated in DKD. Future works are warranted to decipher the biological role of these genes in the pathogenesis of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Perfilación de la Expresión Génica , Biología Computacional
5.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362111

RESUMEN

The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.


Asunto(s)
Antiinfecciosos , Braquiuros , Animales , Humanos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Bacterias/metabolismo , Braquiuros/metabolismo , Pruebas de Sensibilidad Microbiana , Pez Cebra/metabolismo
6.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613722

RESUMEN

New antimicrobial agents are urgently needed to address the increasing emergence and dissemination of multidrug-resistant bacteria. In the study, a chemically synthesized truncated peptide containing 22-amino acids derived from a C-type lectin homolog SpCTL6 of Scylla paramamosain was screened and found to exhibit broad-spectrum antimicrobial activity, indicating that it is an antimicrobial peptide (AMP), named Sp-LECin. Sp-LECin possessed the basic characteristics of most cationic AMPs, such as positive charge (+4) and a relatively high hydrophobicity (45%). After treatment with Sp-LECin, the disruption of microbial membrane integrity and even leakage of cellular contents was observed by scanning electron microscopy (SEM). In addition, Sp-LECin could bind lipopolysaccharide (LPS), increase the outer and inner membrane permeability and induce reactive oxygen species (ROS) production, ultimately leading to the death of Pseudomonas aeruginosa. Furthermore, Sp-LECin exhibited potent anti-biofilm activity against P. aeruginosa during both biofilm formation and maturation. Notably, Sp-LECin had no obvious cytotoxicity and could greatly improve the survival of P. aeruginosa-infected zebrafish, by approximately 40% over the control group after 72 h of treatment. This study indicated that Sp-LECin is a promising antibacterial agent with the potential to be used against devastating global pathogen infections such as P. aeruginosa.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Animales , Pez Cebra/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Pseudomonas aeruginosa/metabolismo , Antiinfecciosos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Biopelículas
7.
Pulm Pharmacol Ther ; 70: 102072, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428599

RESUMEN

BACKGROUND: Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS: Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS: Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION: Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.


Asunto(s)
Angiotensina II , Conexina 43/fisiología , Hipertensión , Miocitos del Músculo Liso/citología , Angiotensina II/farmacología , Animales , Proliferación Celular , Músculo Liso Vascular , Ratas
8.
BMC Bioinformatics ; 20(1): 41, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658571

RESUMEN

BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements. To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network. RESULTS: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a particle instead of just background noise. Particles selected from density maps have a more robust signal than do those directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM. CONCLUSION: To our knowledge, our work is the first to address the particle-selection problem using the segmentation network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions within minutes.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos
9.
Nanotechnology ; 30(1): 015703, 2019 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-30284536

RESUMEN

Particulate matter (PM) air pollution has been established as a significant threat to public health and a destructive factor to the climate and eco-systems. In order to eliminate the effects of PM air pollution, various air filtering strategies based on electrospun nanofibers have recently been developed. However, to date, almost none of the existing nanofibers based air filters can meet the requirements of high-performance air PM filtering, including high PM removal efficiency, low resistance to airflow, and long service life, etc. For the first time, we report a fabrication process using the electrospinning method for air filters based on thermoplastic polyurethane (TPU) nanofibers. The average diameters of TPU nanofibers are tunable from 0.14 ± 0.06 µm to 0.82 ± 0.22 µm by changing the TPU concentrations in polymeric solutions. The optimized TPU nanofibers based air filters demonstrate the attractive attributes of high PM2.5 removal efficiency up to 98.92%, good optical transparency of ∼60%, low pressure drop of ∼10 Pa, high quality factor of 0.45 Pa-1, and long service life under the flow rate of 200 ml min-1, which is ground-breaking compared with the existing nanofibers based air filters. These TPU nanofibers based air filters, with the excellent filtration performance and light transmittance, will shed light on the future research of nanofibers for various filtration applications and greatly benefit the public health by reducing the effects of PM air pollution.


Asunto(s)
Filtros de Aire , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Plásticos/química , Poliuretanos/química , Electricidad Estática , Temperatura , Nanofibras/química , Nanofibras/ultraestructura
10.
J Struct Biol ; 199(3): 196-208, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28756247

RESUMEN

We have developed a software package towards automatic electron tomography (ET): Automatic Tomography (AuTom). The presented package has the following characteristics: accurate alignment modules for marker-free datasets containing substantial biological structures; fully automatic alignment modules for datasets with fiducial markers; wide coverage of reconstruction methods including a new iterative method based on the compressed-sensing theory that suppresses the "missing wedge" effect; and multi-platform acceleration solutions that support faster iterative algebraic reconstruction. AuTom aims to achieve fully automatic alignment and reconstruction for electron tomography and has already been successful for a variety of datasets. AuTom also offers user-friendly interface and auxiliary designs for file management and workflow management, in which fiducial marker-based datasets and marker-free datasets are addressed with totally different subprocesses. With all of these features, AuTom can serve as a convenient and effective tool for processing in electron tomography.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Algoritmos , Marcadores Fiduciales , Interfaz Usuario-Computador , Flujo de Trabajo
11.
J Exp Bot ; 66(1): 99-112, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25324400

RESUMEN

The indeterminate gametophyte1 (ig1) mutation was first characterized to modulate female gametophyte development in maize (Zea mays). However, the function of its rice orthologue, OsIG1, remains unknown. For this, we first analysed OsIG1 localization from differential tissues in rice. Real-time quantitative PCR (qRT-PCR) and histochemical staining results demonstrated that the expression signal of OsIG1 was strongly detected in young inflorescence, moderately in mature flower and weakly in leaf. Furthermore, RNA in situ hybridization analyses exhibited that OsIG1 was strongly expressed in inflorescence meristems, floral meristems, empty-glume- and floret- primordia, especially in the primordia of stamens and immature ovules, and the micropylar side of the mature ovary. In OsIG1-RNAi lines, wrinkled blade formation was accompanied by increased leaf inclination angle. Cross-section further showed that the number of bulliform cells located between the vasculatures was significantly increased, indicating that OsIG1 is involved in division and differentiation of bulliform cell and lateral growth during leaf development. OsIG1-RNAi suppression lines showed pleiotropic phenotypes, including degenerated palea, glume-like features and open hull. In addition, a single OsIG1-RNAi floret is characterized by frequently developing double ovules with abnormal embryo sac development. Additionally, down-regulation of OsIG1 differentially affected the expression of genes associated with the floral organ development including EG1, OsMADS6 and OsMADS1. Taken together, these results demonstrate that OsIG1 plays an essential role in the regulation of empty-glume identity, floral organ number control and female gametophyte development in rice.


Asunto(s)
Regulación hacia Abajo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Meristema/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
12.
Healthcare (Basel) ; 12(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057595

RESUMEN

Nasopharyngeal carcinoma (NPC) requires regular follow-up to detect recurrence as early as possible. However, many patients are unable to regularly follow up due to the inconvenience of the conventional approach. Therefore, this study was designed to investigate the impact of the online clinic on follow-up compliance and prognosis in NPC patients. Patients who were first diagnosed with NPC between April 2019 and November 2019 were enrolled. Good follow-up compliance was defined as having at least one follow-up visit every 6 months within 2 years after treatment completion. Sensitivity analyses were performed using a propensity score matching model. A total of 539 (42%) patients used online follow-up while 731 (58%) used traditional follow-up. The median age of patients in the online cohort was lower than that in the traditional cohort (44 vs. 47, p < 0.001). Compared with the traditional cohort, the online cohort had significantly better follow-up compliance (57.3% vs. 17.1%, p < 0.001) and a higher 2-year PFS rate (98.1% vs. 94.4%, p = 0.003). Survival analysis showed that online follow-up was an independent factor for better survival prognosis (HR 0.39, 95%CI 0.20-0.74, p = 0.004). Sensitivity analysis further confirmed these results. Our study found that the online clinic increased follow-up compliance and improved prognosis in NPC patients.

13.
Biomed Pharmacother ; 177: 116898, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878635

RESUMEN

Liver disease affects millions of people in the world, and China has the highest prevalence of liver disease in the world. Small ubiquitin-related modifier (SUMO) modification is a highly conserved post-translational modification of proteins. They are widely expressed in a variety of tissues, including the heart, liver, kidney and lung. SUMOylation of protein plays a key role in the occurrence and development of liver disease. Therefore, this study reviewed the effects of SUMO protein on non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases to provide novel strategies for targeted treatment of liver disease.


Asunto(s)
Hepatopatías , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Animales , Hepatopatías/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Procesamiento Proteico-Postraduccional
14.
HLA ; 101(2): 174-175, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36303272

RESUMEN

HLA-C*01:02:89 differs from HLA-C*01:02:01:01 by one nucleotide in exon 2.


Asunto(s)
Pueblos del Este de Asia , Antígenos HLA-C , Humanos , Alelos , Antígenos HLA-C/genética , Análisis de Secuencia de ADN
15.
Phytomedicine ; 121: 155125, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820466

RESUMEN

BACKGROUND: Kaempferol is a flavonoid derived from the herb, Kaempferia galanga L., in addition to exhibiting a wide range of pharmacological properties, kaempferol is also an anti-inflammatory, anti-lipid metabolizing, and anti-oxidative stress agent. The underlying molecular mechanisms of its effects on vascular endothelial growth factor (VEGF) secretion and activation of hepatic stellate cells (HSCs) are yet unknown. Activated HSCs induces VEGF release and extracellular matrix (ECM) accumulation which are important factors in hepatic fibrosis. PURPOSE: Our aim is to explore how kaempferol may affect hepatic fibrosis and the mechanisms behind its effects. METHODS: The in vivo model was Sprague-Dawley rats induced with carbon tetrachloride (CCl4). Histological staining was used to observe histological features of the liver. The levels of (alanine aminotransferase) ALT and (aspartate aminotransferase) AST were detected by the corresponding kits. Platelet-derived growth factor (PDGF) was used to stimulate the HSC-T6 rat hepatic stellate cells. The mechanisms underlying this process were investigated using a variety of molecular approaches, including immunofluorescence, RT-qPCR, and western blotting. Moreover, intracellular Ca2+ were observed by laser confocal microscope. RESULTS: It was found that kaempferol significantly reduced the expression of ASIC1a, VEGF, α-SMA and Collagen-I proteins in a model of CCl4-induced hepatic fibrosis in rats. In HSC-T6, kaempferol inhibits activation of HSCs by decreasing expression of ASIC1a, eIF2α, p-eIF2α and ATF-4. Laser confocal fluorescence showed that kaempferol inhibited Ca2+ influx and reduced Ca2+ concentration around the endoplasmic reticulum. Molecular docking and cellular thermal shift assay (CETSA) results further indicated that kaempferol interacted with ASIC1a. We found that kaempferol may promote the degradation of ASIC1a and inhibited ASIC1a- mediated upregulation of ERS. CONCLUSION: The data from our in vivo experiments demonstrate that kaempferol effectively attenuates hepatic fibrosis. In vitro studies we further propose a novel mechanism of kaempferol against hepatic fibrosis which can interact with ASIC1a and promote ASIC1a degradation while inhibiting the activation and VEGF release of HSCs by suppressing the ASIC1a-eIF2α-ATF-4 signaling pathway.


Asunto(s)
Tetracloruro de Carbono , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Tetracloruro de Carbono/efectos adversos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quempferoles/farmacología , Quempferoles/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado , Células Estrelladas Hepáticas
16.
J Clin Oncol ; 41(31): 4881-4892, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531592

RESUMEN

PURPOSE: Homoharringtonine (HHT) is commonly used for the treatment of Chinese adult AML, and all-trans retinoic acid (ATRA) has been verified in acute promyelocytic leukemia (APL). However, the efficacy and safety of HHT-based induction therapy have not been confirmed for childhood AML, and ATRA-based treatment has not been evaluated among patients with non-APL AML. PATIENTS AND METHODS: This open-label, multicenter, randomized Chinese Children's Leukemia Group-AML 2015 study was performed across 35 centers in China. Patients with newly diagnosed childhood AML were first randomly assigned to receive an HHT-based (H arm) or etoposide-based (E arm) induction regimen and then randomly allocated to receive cytarabine-based (AC arm) or ATRA-based (AT arm) maintenance therapy. The primary end points were the complete remission (CR) rate after induction therapy, and the secondary end points were the overall survival (OS) and event-free survival (EFS) at 3 years. RESULTS: We enrolled 1,258 patients, of whom 1,253 were included in the intent-to-treat analysis. The overall CR rate was significantly higher in the H arm than in the E arm (79.9% v 73.9%, P = .014). According to the intention-to-treat analysis, the 3-year OS was 69.2% (95% CI, 65.1 to 72.9) in the H arm and 62.8% (95% CI, 58.7 to 66.6) in the E arm (P = .025); the 3-year EFS was 61.1% (95% CI, 56.8 to 65.0) in the H arm and 53.4% (95% CI, 49.2 to 57.3) in the E arm (P = .022). Among the per-protocol population, who received maintenance therapy, the 3-year EFS did not differ significantly across the four arms (H + AT arm: 70.7%, 95% CI, 61.1 to 78.3; H + AC arm: 74.8%, 95% CI, 67.0 to 81.0, P = .933; E + AC arm: 72.9%, 95% CI, 65.1 to 79.2, P = .789; E + AT arm: 66.2%, 95% CI, 56.8 to 74.0, P = .336). CONCLUSION: HHT is an alternative combination regimen for childhood AML. The effects of ATRA-based maintenance are comparable with those of cytarabine-based maintenance therapy.


Asunto(s)
Pueblos del Este de Asia , Leucemia Promielocítica Aguda , Niño , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Citarabina , Homoharringtonina/uso terapéutico , Leucemia Promielocítica Aguda/diagnóstico , Estudios Multicéntricos como Asunto , Inducción de Remisión , Tasa de Supervivencia , Resultado del Tratamiento , Tretinoina/efectos adversos
17.
AMB Express ; 12(1): 123, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121525

RESUMEN

Anaerobic fungus-methanogen co-cultures from rumen liquids and faeces can degrade lignocellulose efficiently. In this study, 31 fungus-methanogen co-cultures were first obtained from the rumen of yaks grazing in Qinghai Province, China, using the Hungate roll-tube technique. The fungi were identified according to morphological characteristics and internal transcribed spacer (ITS) sequences. The methanogens associated with each fungus were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene sequencing. They were five co-culture types: Neocallimastix frontalis + Methanobrevibacter ruminantium, Neocallimastix frontalis + Methanobrevibacter gottschalkii, Orpinomyces joyonii + Methanobrevibacter ruminantium, Caecomyces communis + Methanobrevibacter ruminantium, and Caecomyces communis + Methanobrevibacter millerae. Among the 31 co-cultures, during the 5-day incubation, the N. frontalis + M. gottschalkii co-culture YakQH5 degraded 59.0%-68.1% of the dry matter (DM) and 49.5%-59.7% of the neutral detergent fiber (NDF) of wheat straw, corn stalk, rice straw, oat straw and sorghum straw to produce CH4 (3.0-4.6 mmol/g DM) and acetate (7.3-8.6 mmol/g DM) as end-products. Ferulic acid (FA) released at 4.8 mg/g DM on corn stalk and p-coumaric acid (PCA) released at 11.7 mg/g DM on sorghum straw showed the highest values, with the following peak values of enzyme activities: xylanase at 12,910 mU/mL on wheat straw, ferulic acid esterase (FAE) at 10.5 mU/mL on corn stalk, and p-coumaric acid esterase (CAE) at 20.5 mU/mL on sorghum straw. The N. frontalis + M. gottschalkii co-culture YakQH5 from Qinghai yaks represents a new efficient combination for lignocellulose biodegradation, performing better than previously reported fungus-methanogen co-cultures from the digestive tract of ruminants.

18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 807-812, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36082711

RESUMEN

Objective To investigate whether capsaicin (CAP) can improve the proliferation and migration of cerebral basilar artery smooth muscle cells (BASMCs) in spontaneously hypertensive rats (SHR). Methods Primary BASMCs of SHR and Wistar-Kyoto (WKY) rats were cultured in vitro, randomly divided into control group (WKY group), SHR group and capsaicin treatment group (CAP group). The intervention concentration of CAP was determined by CCK-8 assay; TranswellTM chamber assay and scratch test were used to detect the migration ability of BASMCs; the expression and distribution of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) in BASMCs were detected by immunofluorescence assay, and Western blot analysis was used to detect the protein levels of OPN and PCNA in BASMCs. Results Compared with WKY group, the proliferation and migration ability of BASMC in SHR group were enhanced, while the CAP treatment undermined the proliferation and migration of BASMCs. OPN was expressed in the cytoplasm and nucleus of BASMCs, while PCNA was mainly expressed in the nuclei. Compared with WKY group, the expression and protein level of OPN and PCNA were increased in SHR group, and decreased significantly after CAP treatment. Conclusion Capsaicin can reduce the proliferation and migration of SHR derived BASMCs.


Asunto(s)
Arteria Basilar , Capsaicina , Animales , Capsaicina/metabolismo , Proliferación Celular , Células Cultivadas , Miocitos del Músculo Liso/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
19.
Sci Rep ; 12(1): 12913, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902620

RESUMEN

Quantitative real-time polymerase chain reaction (qRT-PCR) is a sensitive and widely used technique for quantifying gene expression levels, and its accuracy depends on the reference genes used for data normalization. To date, no reference gene has been reported in the nutritious and functional vegetable okra (Abelmoschus esculentus L.). Herein, 11 candidates of reference genes were selected and evaluated for their expression stability in okra in different tissues at different developmental stages by using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Among them, eukaryotic initiation factor 4 alpha (eIF4A) and protein phosphatase 2A (PP2A) showed the highest stability, while TUA5 had the lowest stability. The combined usage of these two most stable reference genes was sufficient to normalize gene expression in okra. Then, the above results were further validated by normalizing the expression of the cellulose synthase gene CesA4. This work provides appropriate reference genes for transcript normalization in okra, which will facilitate subsequent functional gene research on this vegetable crop.


Asunto(s)
Abelmoschus , Abelmoschus/genética , Algoritmos , Perfilación de la Expresión Génica , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Programas Informáticos
20.
Int J Mol Med ; 50(3)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35856410

RESUMEN

The investigation of effective therapeutic drugs for pulmonary hypertension (PH) is critical. KIR2.1 plays crucial roles in regulating cell proliferation and migration, and vascular remodeling. However, researchers have not yet clearly determined whether KIR2.1 participates in the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and its role in pulmonary vascular remodeling (PVR) also remains elusive. The present study aimed to examine whether KIR2.1 alters PASMC proliferation and migration, and participates in PVR, as well as to explore its mechanisms of action. For the in vivo experiment, a PH model was established by intraperitoneally injecting Sprague­Dawley rats monocrotaline (MCT). Hematoxylin and eosin staining revealed evidence of PVR in the rats with PH. Immunofluorescence staining and western blot analysis revealed increased levels of the KIR2.1, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) proteins in pulmonary blood vessels and lung tissues following exposure to MCT, and the TGF­ß1/SMAD2/3 signaling pathway was activated. For the in vitro experiments, the KIR2.1 inhibitor, ML133, or the TGF­ß1/SMAD2/3 signaling pathway blocker, SB431542, were used to pre­treat human PASMCs (HPASMCs) for 24 h, and the cells were then treated with platelet­derived growth factor (PDGF)­BB for 24 h. Scratch and Transwell assays revealed that PDGF­BB promoted cell proliferation and migration. Immunofluorescence staining and western blot analysis demonstrated that PDGF­BB upregulated OPN and PCNA expression, and activated the TGF­ß1/SMAD2/3 signaling pathway. ML133 reversed the proliferation and migration induced by PDGF­BB, inhibited the expression of OPN and PCNA, inhibited the TGF­ß1/SMAD2/3 signaling pathway, and reduced the proliferation and migration of HPASMCs. SB431542 pre­treatment also reduced cell proliferation and migration; however, it did not affect KIR2.1 expression. On the whole, the results of the present study demonstrate that KIR2.1 regulates the TGF­ß1/SMAD2/3 signaling pathway and the expression of OPN and PCNA proteins, thereby regulating the proliferation and migration of PASMCs and participating in PVR.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Animales , Becaplermina/metabolismo , Becaplermina/farmacología , Proliferación Celular , Humanos , Hipertensión Pulmonar/metabolismo , Monocrotalina , Miocitos del Músculo Liso/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Arteria Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Remodelación Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA