Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36888569

RESUMEN

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Papaína , Papaína/metabolismo , Beclina-1 , Péptido Hidrolasas/metabolismo , Autofagia , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Plant Physiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758114

RESUMEN

Lespedeza potaninii, a xerophytic subshrub belonging to the legume family, is native to the Tengger Desert and is highly adapted to drought. It has important ecological value due to its drought adaptability, but the underlying molecular mechanisms remain largely unknown. Here, we report a 1.24 Gb chromosome-scale assembly of the L. potaninii genome (contig N50=15.75 Mb). Our results indicate that L. potaninii underwent an allopolyploid event with two subgenomes, A and B, presenting asymmetric evolution and B subgenome dominance. We estimate that the two diploid progenitors of L. potaninii diverged around 3.6 MYA and merged around 1.0 MYA. We revealed that the expansion of hub genes associated with drought responses, such as the binding partner 1 of accelerated cell death 11 (ACD11) (BPA1), facilitated environmental adaptations of L. potaninii to desert habitats. We found a novel function of the BPA1 family in abiotic stress tolerance in addition to the known role in regulating the plant immune response, which could improve drought tolerance by positively regulating reactive oxygen species homeostasis in plants. We revealed that bZIP transcription factors could bind to the BPA1 promoter and activate its transcription. Our work fills the genomic data gap in the Lespedeza genus and the tribe Desmodieae, which should provide both theoretical support in the study of drought tolerance and in the molecular breeding of legume crops.

3.
BMC Genomics ; 25(1): 556, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831327

RESUMEN

BACKGROUND: Melilotus, a member of the Fabaceae family, is a pivotal forage crop that is extensively cultivated in livestock regions globally due to its notable productivity and ability to withstand abiotic stress. However, the genetic attributes of the chloroplast genome and the evolutionary connections among different Melilotus species remain unresolved. RESULTS: In this study, we compiled the chloroplast genomes of 18 Melilotus species and performed a comprehensive comparative analysis. Through the examination of protein-coding genes, we successfully established a robust phylogenetic tree for these species. This conclusion is further supported by the phylogeny derived from single-nucleotide polymorphisms (SNPs) across the entire chloroplast genome. Notably, our findings revealed that M. infestus, M. siculus, M. sulcatus, and M. speciosus formed a distinct subgroup within the phylogenetic tree. Additionally, the chloroplast genomes of these four species exhibit two shared inversions. Moreover, inverted repeats were observed to have reemerged in six species within the IRLC. The distribution patterns of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) within protein-coding genes indicated that ycf1 and ycf2 accumulated nonconservative alterations during evolutionary development. Furthermore, an examination of the evolutionary rate of protein-coding genes revealed that rps18, rps7, and rpl16 underwent positive selection specifically in Melilotus. CONCLUSIONS: We present a comparative analysis of the complete chloroplast genomes of Melilotus species. This study represents the most thorough and detailed exploration of the evolution and variability within the genus Melilotus to date. Our study provides valuable chloroplast genomic information for improving phylogenetic reconstructions and making biogeographic inferences about Melilotus and other Papilionoideae species.


Asunto(s)
Genoma del Cloroplasto , Melilotus , Filogenia , Polimorfismo de Nucleótido Simple , Melilotus/genética , Melilotus/clasificación , Variación Genética , Evolución Molecular , Genómica/métodos
4.
J Virol ; 97(4): e0012823, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36975782

RESUMEN

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Asunto(s)
Clatrina , Proteínas M de Coronavirus , Endocitosis , Proteínas del Choque Térmico HSC70 , Virus de la Gastroenteritis Transmisible , Internalización del Virus , Virus de la Gastroenteritis Transmisible/fisiología , Clatrina/metabolismo , Proteínas M de Coronavirus/metabolismo , Línea Celular , Humanos , Animales , Replicación Viral
5.
Vet Res ; 55(1): 44, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589930

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-ß) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-ß production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.


Asunto(s)
Alphacoronavirus , Proteínas de la Nucleocápside , Animales , Porcinos , Alphacoronavirus/metabolismo , Interferones/genética , Proteína 58 DEAD Box/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339209

RESUMEN

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) is the most serious disease threatening kiwifruit production. Our previous study found genes encoding the U-box containing proteins were significantly regulated by Psa infection. Here, we report a U-box type E3 ubiquitin ligase PUB23 in kiwifruit which acts as a negative regulator of immune responses against Psa. PUB23 was found to physically interact with GT1, a trihelix transcription factor, in vitro and in vivo. The expression of GT1 was up-regulated in PUB23-silenced plants, indicating that interacting with PUB23 may directly or indirectly suppress GT1 expression. The silencing of PUB23 led to enhanced immune responses of PAMP-triggered immunity (PTI), including a higher expression level of defense marker genes PR1 and RIN4, and increased accumulation of hydrogen peroxide and superoxide anion. Our results reveal a negative role PUB23 plays in kiwifruit immune responses against Psa and may regulate gene expression by interacting with GT1.


Asunto(s)
Actinidia , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Pseudomonas syringae/fisiología , Factores de Transcripción/genética , Regulación de la Expresión Génica , Actinidia/microbiología , Inmunidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
7.
J Environ Manage ; 350: 119640, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38029499

RESUMEN

The proposal of the dual carbon goal and the blue economy in China has sparked a keen interest in carbon emissions reduction from sewage treatment. Carbon accounting in urban sewage plants serves as the foundation for carbon emission reduction in sewage treatment. This paper re-evaluated carbon accounting in the operational processes for urban sewage treatment plants to develop a novel carbon emission evaluation model for anaerobic-anoxic-oxic treatment plants. The results show that the carbon emissions generated by non-carbon dioxide gases far exceed the carbon emissions from carbon dioxide alone. Moreover, the recycling of sewage leads to carbon emissions reduction that offsets the carbon emissions generated during the operation of the sewage plant. Also, the carbon emissions generated by sewage treatment plants are lower than those generated by untreated sewage. The findings and insights provided in this paper provide valuable references for carbon accounting and the implementation of low-carbon practices in urban sewage treatment plants.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Dióxido de Carbono/análisis , Reciclaje
8.
BMC Vet Res ; 19(1): 279, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110972

RESUMEN

The purpose of this study was to determine the level of horizontal transmission of the blaCTX-M-65 gene and the role of its associated mobile genetic elements (MGEs) in the bovine-derived Escherichia coli. After PCR identification, two plasmids carrying blaCTX-M-65 were successfully transferred to the recipient E. coli J53 Azr through conjugation assays and subsequently selected for Whole-Genome sequencing (WGS) analysis. The resistance profiles of these two positive strains and their transconjugants were also determined through antimicrobial susceptibility tests. Whole genome data were acquired using both the PacBio sequencing platform and the Illumina data platform. The annotated results were then submitted to the Genbank database for accession number recording. For comparison, the genetic environment of plasmids carrying the resistance gene blaCTX-M-65 was mapped using the Easyfig software. WGS analysis revealed Tn3-like composite transposons bearing blaCTX-M-65, blaTEM-1, and blaOXA-10 in the IncHI2-type plasmids of these two E. coli ST1508 strains. A phylogenetic tree was generated from all 48 assembled E. coli isolates blaCTX-M-65, blaTEM-1, and blaOXA-10 from the NCBI Pathogen Detection database with our two isolates, showing the relationships and the contribution of SNPs to the diversity between genetic samples. This study suggests that the transmissibility of blaCTX-M-65 on Tn3-like composite transposons contributes to an increased risk of its transmission in E. coli derived from dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Bovinos , Animales , Escherichia coli , Infecciones por Escherichia coli/veterinaria , Filogenia , Antibacterianos/farmacología , beta-Lactamasas/genética , Plásmidos/genética , China
9.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067948

RESUMEN

The accurate prediction of joint torque is required in various applications. Some traditional methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromusculoskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex optimization solution processes, respectively. Recently, machine learning methods have been popularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic information as inputs. This study aims to predict lower limb joint torque in the sagittal plane during walking, using a long short-term memory (LSTM) model and Gaussian process regression (GPR) model, respectively, with seven characteristics extracted from the sEMG signals of five muscles and three joint angles as inputs. The majority of the normalized root mean squared error (NRMSE) values in both models are below 15%, most Pearson correlation coefficient (R) values exceed 0.85, and most decisive factor (R2) values surpass 0.75. These results indicate that the joint prediction of torque is feasible using machine learning methods with sEMG signals and joint angles as inputs.


Asunto(s)
Memoria a Corto Plazo , Músculo Esquelético , Músculo Esquelético/fisiología , Torque , Articulaciones/fisiología , Electromiografía/métodos , Extremidad Inferior
10.
Angew Chem Int Ed Engl ; 62(52): e202315076, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37960950

RESUMEN

Polymer electrolytes provide a visible pathway for the construction of high-safety quasi-solid-state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na-ion conduction via the cooperation of polymer-salt, ionic liquid, and electron-rich additive. Especially, PVDF-HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+ -FSI- ) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron-rich Nerolin with π-cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F-rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10-3  S cm-1 ) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance.

11.
Curr Issues Mol Biol ; 44(12): 6368-6384, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36547095

RESUMEN

The plum (Prunus salicina Lindl.) is one of the traditional and economically important stone fruit trees in China. Anthocyanins are important pigments in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits, which has hindered research on the molecular mechanism of its utilization. Our research shows that the chlorophyll content was gradually decreased and the contents of anthocyanin and flavonoid increased during the coloring process of the pulp in 'Huaxiu' plums (P. salicina). Then, the RNA-Seq technique was used to analyze the transcriptome of pulp color changes with three different stages (yellow, orange, and red) in the 'Huaxiu' plum (P. salicina). A total of 57,119 unigenes with a mean length of 953 bp were generated, and 61.6% of them were annotated to public databases. The Gene Ontology (GO) database assigned 21,438 unigenes with biological process, cellular components, and molecular function. In addition, 32,146 unigenes were clustered into 25 categories for functional classification by the COG database, and 7595 unigenes were mapped to 128 KEGG pathways by the KEGG pathway database. Of these, 1095 (YS-versus-OS), 4947 (YS-versus-RS), and 3414 (OS-versus-RS) genes were significantly expressed differentially between two coloration stages. The GO and KEGG pathway enrichment analysis revealed that 20 and 1 differentially expressed genes (DEG) are involved in flavonoid biosynthesis and anthocyanin biosynthesis, respectively. Finally, we mainly identified three structural genes as candidate genes. The transcriptome information in this study provide a basis for further studies of pulp colors in plum and contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in pulp.

12.
Plant Biotechnol J ; 20(3): 592-609, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34717292

RESUMEN

Melilotus species are used as green manure and rotation crops worldwide and contain abundant pharmacologically active coumarins. However, there is a paucity of information on its genome and coumarin production and function. Here, we reported a chromosome-scale assembly of Melilotus albus genome with 1.04 Gb in eight chromosomes, containing 71.42% repetitive elements. Long terminal repeat retrotransposon bursts coincided with declining of population sizes during the Quaternary glaciation. Resequencing of 94 accessions enabled insights into genetic diversity, population structure, and introgression. Melilotus officinalis had relatively larger genetic diversity than that of M. albus. The introgression existed between M. officinalis group and M. albus group, and gene flows was from M. albus to M. officinalis. Selection sweep analysis identified candidate genes associated with flower colour and coumarin biosynthesis. Combining genomics, BSA, transcriptomics, metabolomics, and biochemistry, we identified a ß-glucosidase (BGLU) gene cluster contributing to coumarin biosynthesis. MaBGLU1 function was verified by overexpression in M. albus, heterologous expression in Escherichia coli, and substrate feeding, revealing its role in scopoletin (coumarin derivative) production and showing that nonsynonymous variation drives BGLU enzyme activity divergence in Melilotus. Our work will accelerate the understanding of biologically active coumarins and their biosynthetic pathways, and contribute to genomics-enabled Melilotus breeding.


Asunto(s)
Cumarinas , Melilotus , Cumarinas/metabolismo , Melilotus/química , Melilotus/genética , Melilotus/metabolismo , Fitomejoramiento , Biología de Sistemas , Transcriptoma/genética
13.
J Virol ; 95(21): e0124621, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34379449

RESUMEN

Rotaviruses are the causative agents of severe and dehydrating gastroenteritis in children, piglets, and many other young animals. They replicate their genomes and assemble double-layered particles in cytoplasmic electron-dense inclusion bodies called "viroplasms." The formation of viroplasms is reportedly associated with the stability of microtubules. Although material transport is an important function of microtubules, whether and how microtubule-based transport influences the formation of viroplasms are still unclear. Here, we demonstrate that small viroplasms move and fuse in living cells. We show that microtubule-based dynein transport affects rotavirus infection, viroplasm formation, and the assembly of transient enveloped particles (TEPs) and triple-layered particles (TLPs). The dynein intermediate chain (DIC) is shown to localize in the viroplasm and to interact directly with nonstructural protein 2 (NSP2), indicating that the DIC is responsible for connecting the viroplasm to dynein. The WD40 repeat domain of the DIC regulates the interaction between the DIC and NSP2, and the knockdown of the DIC inhibited rotaviral infection, viroplasm formation, and the assembly of TEPs and TLPs. Our findings show that rotavirus viroplasms hijack dynein transport for fusion events, required for maximal assembly of infectious viral progeny. This study provides novel insights into the intracellular transport of viroplasms, which is involved in their biogenesis. IMPORTANCE Because the viroplasm is the viral factory for rotavirus replication, viroplasm formation undoubtedly determines the effective production of progeny rotavirus. Therefore, an understanding of the virus-host interactions involved in the biogenesis of the viroplasm is critical for the future development of prophylactic and therapeutic strategies. Previous studies have reported that the formation of viroplasms is associated with the stability of microtubules, whereas little is known about its specific mechanism. Here, we demonstrate that rotavirus viroplasm formation takes advantage of microtubule-based dynein transport mediated by an interaction between NSP2 and the DIC. These findings provide new insight into the intracellular transport of viroplasms.


Asunto(s)
Dineínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Infecciones por Rotavirus/virología , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Compartimentos de Replicación Viral/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Microtúbulos/metabolismo , Dominios Proteicos , Transporte de Proteínas , Porcinos , Imagen de Lapso de Tiempo , Ensamble de Virus , Replicación Viral
14.
J Virol ; 95(16): e0018721, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037422

RESUMEN

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Asunto(s)
Antivirales/farmacología , Proteínas de la Nucleocápside de Coronavirus/química , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Quercetina/análogos & derivados , Proteína p53 Supresora de Tumor/química , Secuencia de Aminoácidos , Animales , Antivirales/química , Sitios de Unión , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus/antagonistas & inhibidores , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Simulación del Acoplamiento Molecular , Señales de Localización Nuclear , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Quercetina/química , Quercetina/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/genética , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
15.
Endoscopy ; 54(4): 396-400, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33893629

RESUMEN

BACKGROUND: This study aimed to investigate the diagnostic and therapeutic value of a digital single-operator cholangioscope (SOC) system for endoscopic management of acute appendicitis. METHODS: 14 patients with acute uncomplicated simple or supportive appendicitis were evaluated between November 2018 and September 2020. The diagnosis of acute appendicitis was confirmed by direct colonoscopy imaging and cholangioscope. The success rate of digital SOC-assisted endoscopic retrograde appendicitis therapy (ERAT), the procedure time, postoperative length of hospital stay, complications, and recurrence rate were recorded. RESULTS: Technical success rate was 100 %, with high quality imaging of the appendiceal cavity achieved using SOC in all 14 patients. The mean procedure time was 37.8 (standard deviation [SD] 22) minutes. All patients experienced immediate relief from abdominal pain after the procedure. Mean postoperative hospitalization was 1.9 (SD 0.7) days. No recurrence occurred during 2-24 months of follow-up. CONCLUSION: Digital SOC-assisted ERAT provided a feasible, safe, and effective alternative approach for diagnosis and management of acute uncomplicated appendicitis without the need for X-ray or ultrasonic guidance.


Asunto(s)
Apendicitis , Apéndice , Laparoscopía , Enfermedad Aguda , Apendicectomía , Apendicitis/diagnóstico por imagen , Apendicitis/cirugía , Humanos , Tiempo de Internación , Resultado del Tratamiento
16.
J Basic Microbiol ; 62(2): 95-108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34878177

RESUMEN

Hot springs ecosystem is the most ancient continuously inhabited ecosystem on earth which harbors diverse thermophilic bacteria and archaea distributed worldwide. Life in extreme environments is very challenging so there is a great potential biological dark matter and their adaptation to harsh environments eventually producing thermostable enzymes which are very vital for the welfare of mankind. There is an enormous need for a new generation of stable enzymes that can endure harsh conditions in industrial processes and can either substitute or complement conventional chemical processes. Here, we review at the variety and distribution of thermophilic microbes, as well as the different thermostable enzymes that help them survive at high temperatures, such as proteases, amylases, lipases, cellulases, pullulanase, xylanases, and DNA polymerases, as well as their special properties, such as high-temperature stability. We have documented the novel isolated thermophilic and hyperthermophilic microorganisms, as well as the discovery of their enzymes, demonstrating their immense potential in the scientific community and in industry.


Asunto(s)
Celulasas , Ecosistema , Archaea/genética , Biotecnología , Calor
17.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806246

RESUMEN

Drought stress is one of the major constraints that decreases global crop productivity. Alfalfa, planted mainly in arid and semi-arid areas, is of crucial importance in sustaining the agricultural system. The family 1 UDP-glycosyltransferases (UGT) is indispensable because it takes part in the regulation of plant growth and stress resistance. However, a comprehensive insight into the participation of the UGT family in adaptation of alfalfa to drought environments is lacking. In the present study, a genome-wide analysis and profiling of the UGT in alfalfa were carried out. A total of 409 UGT genes in alfalfa (MsUGT) were identified and they are clustered into 13 groups. The expression pattern of MsUGT genes were analyzed by RNA-seq data in six tissues and under different stresses. The quantitative real-time PCR verification genes suggested the distinct role of the MsUGT genes under different drought stresses and abscisic acid (ABA) treatment. Furthermore, the function of MsUGT003 and MsUGT024, which were upregulated under drought stress and ABA treatment, were characterized by heterologous expression in yeast. Taken together, this study comprehensively analyzed the UGT gene family in alfalfa for the first time and provided useful information for improving drought tolerance and in molecular breeding of alfalfa.


Asunto(s)
Sequías , Medicago sativa , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/metabolismo , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Uridina Difosfato/metabolismo
18.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35806414

RESUMEN

The GRAS gene family is a plant-specific family of transcription factors, which play an important role in many metabolic pathways, such as plant growth and development and stress response. However, there is no report on the comprehensive study of the GRAS gene family of Melilotus albus. Here, we identified 55 MaGRAS genes, which were classified into 8 subfamilies by phylogenetic analysis, and unevenly distributed on 8 chromosomes. The structural analysis indicated that 87% of MaGRAS genes have no intron, which is highly conservative in different species. MaGRAS proteins of the same subfamily have similar protein motifs, which are the source of functional differences of different genomes. Transcriptome and qRT-PCR data were combined to determine the expression of 12 MaGRAS genes in 6 tissues, including flower, seed, leaf, stem, root and nodule, which indicated the possible roles in plant growth and development. Five and seven MaGRAS genes were upregulated under ABA, drought, and salt stress treatments in the roots and shoots, respectively, indicating that they play vital roles in the response to ABA and abiotic stresses in M. albus. Furthermore, in yeast heterologous expression, MaGRAS12, MaGRAS34 and MaGRAS33 can enhance the drought or salt tolerance of yeast cells. Taken together, these results provide basic information for understanding the underlying molecular mechanisms of GRAS proteins and valuable information for further studies on the growth, development and stress responses of GRAS proteins in M. albus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Melilotus , Perfilación de la Expresión Génica , Genoma de Planta , Melilotus/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética
19.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233332

RESUMEN

As an important forage legume with high values in feed and medicine, Melilotus albus has been widely cultivated. The AP2/ERF transcription factor has been shown to play an important regulatory role in plant drought resistance, but it has not been reported in the legume forage crop M. albus. To digger the genes of M. albus in response to drought stress, we identified and analyzed the ERF gene family of M. albus at the genome-wide level. A total of 100 MaERF genes containing a single AP2 domain sequence were identified in this study, named MaERF001 to MaERF100, and bioinformatics analysis was performed. Collinearity analysis indicated that segmental duplication may play a key role in the expansion of the M. albus ERF gene family. Cis-acting element predictions suggest that MaERF genes are involved in various hormonal responses and abiotic stresses. The expression patterns indicated that MaERFs responded to drought stress to varying degrees. Furthermore, four up-regulated ERFs (MaERF008, MaERF037, MaERF054 and MaERF058) under drought stress were overexpressed in yeast and indicated their biological functions to confer the tolerance to drought. This work will advance the understanding of the molecular mechanisms underlying the drought response in M. albus. Further study of the promising potential candidate genes identified in this study will provide a valuable resource as the next step in functional genomics studies and improve the possibility of improving drought tolerance in M. albus by transgenic approaches.


Asunto(s)
Sequías , Melilotus , Regulación de la Expresión Génica de las Plantas , Melilotus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499677

RESUMEN

Piceatannol (PIC) is a natural stilbene extracted from grape skins that exhibits biological activities such as antibacterial, antitumor, and antioxidant activities. The present study was carried out to further investigate the effect of PIC on the antibacterial activity of different antibiotics and to reveal the antibacterial mechanism of PIC. We found that PIC had an inhibitory effect against Staphylococcus aureus (S. aureus); its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 128 µg/mL and 256 µg/ mL, respectively. Additionally, we measured the fractional inhibitory concentration (FIC) of PIC combined with antibiotics via the checkerboard method. The results showed that when PIC and ciprofloxacin (CIP) were combined, they displayed a synergistic effect against S. aureus. Moreover, this synergistic effect was verified by time-kill assays. Further, the results of the membrane permeability assay and proton motive force assay revealed that PIC could enhance the sensitivity of S. aureus to CIP by dissipating the bacterial proton motive force (PMF), particularly the ∆ψ component, rather than increasing membrane permeability. PIC also inhibited bacterial adenosine triphosphate (ATP) synthesis and was less likely to induce bacterial resistance but exhibited slight hemolytic activity on mammalian erythrocytes. In summary, the combination of PIC and CIP is expected to become a new drug combination to combat S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Estilbenos , Animales , Staphylococcus aureus , Ciprofloxacina/farmacología , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias , Estilbenos/farmacología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA