Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2209967120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719921

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Humanos , Cardiomiopatía Dilatada/genética , Supervivencia Celular , Distrofina/genética , Insuficiencia Cardíaca/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/metabolismo , Telómero/genética , Telómero/metabolismo
2.
Circ Res ; 132(2): 187-204, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36583388

RESUMEN

BACKGROUND: NOTCH1 pathogenic variants are implicated in multiple types of congenital heart defects including hypoplastic left heart syndrome, where the left ventricle is underdeveloped. It is unknown how NOTCH1 regulates human cardiac cell lineage determination and cardiomyocyte proliferation. In addition, mechanisms by which NOTCH1 pathogenic variants lead to ventricular hypoplasia in hypoplastic left heart syndrome remain elusive. METHODS: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 genome editing was utilized to delete NOTCH1 in human induced pluripotent stem cells. Cardiac differentiation was carried out by sequential modulation of WNT signaling, and NOTCH1 knockout and wild-type differentiating cells were collected at day 0, 2, 5, 10, 14, and 30 for single-cell RNA-seq. RESULTS: Human NOTCH1 knockout induced pluripotent stem cells are able to generate functional cardiomyocytes and endothelial cells, suggesting that NOTCH1 is not required for mesoderm differentiation and cardiovascular development in vitro. However, disruption of NOTCH1 blocks human ventricular-like cardiomyocyte differentiation but promotes atrial-like cardiomyocyte generation through shortening the action potential duration. NOTCH1 deficiency leads to defective proliferation of early human cardiomyocytes, and transcriptomic analysis indicates that pathways involved in cell cycle progression and mitosis are downregulated in NOTCH1 knockout cardiomyocytes. Single-cell transcriptomic analysis reveals abnormal cell lineage determination of cardiac mesoderm, which is manifested by the biased differentiation toward epicardial and second heart field progenitors at the expense of first heart field progenitors in NOTCH1 knockout cell populations. CONCLUSIONS: NOTCH1 is essential for human ventricular-like cardiomyocyte differentiation and proliferation through balancing cell fate determination of cardiac mesoderm and modulating cell cycle progression. Because first heart field progenitors primarily contribute to the left ventricle, we speculate that pathogenic NOTCH1 variants lead to biased differentiation of first heart field progenitors, blocked ventricular-like cardiomyocyte differentiation, and defective cardiomyocyte proliferation, which collaboratively contribute to left ventricular hypoplasia in hypoplastic left heart syndrome.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Células Madre Pluripotentes Inducidas , Humanos , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/fisiología , Miocitos Cardíacos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
Nature ; 572(7769): 335-340, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316208

RESUMEN

Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.


Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Mutación , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Haploinsuficiencia/genética , Homeostasis , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de la Célula Individual
4.
J Mol Cell Cardiol ; 192: 65-78, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761989

RESUMEN

Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Células Endoteliales/metabolismo , Animales , Células Madre Pluripotentes/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología
5.
Eur Heart J ; 42(30): 2935-2951, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34179958

RESUMEN

AIMS: The morbidity and mortality rates of calcific aortic valve disease (CAVD) remain high while treatment options are limited. Here, we evaluated the role and therapeutic value of dual-specificity phosphatase 26 (DUSP26) in CAVD. METHODS AND RESULTS: Microarray profiling of human calcific aortic valves and normal controls demonstrated that DUSP26 was significantly up-regulated in calcific aortic valves. ApoE-/- mice fed a normal diet or a high cholesterol diet (HCD) were infected with adeno-associated virus serotype 2 carrying DUSP26 short-hairpin RNA to examine the effects of DUSP26 silencing on aortic valve calcification. DUSP26 silencing ameliorated aortic valve calcification in HCD-treated ApoE-/- mice, as evidenced by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and decreased levels of osteogenic markers (Runx2, osterix, and osteocalcin) in the aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Immunoprecipitation, liquid chromatography-tandem mass spectrometry, and functional assays revealed that dipeptidyl peptidase-4 (DPP4) interacted with DUSP26 to mediate the procalcific effects of DUSP26. High N6-methyladenosine levels up-regulated DUSP26 in CAVD; in turn, DUSP26 activated DPP4 by antagonizing mouse double minute 2-mediated ubiquitination and degradation of DPP4, thereby promoting CAVD progression. CONCLUSION: DUSP26 promotes aortic valve calcification by inhibiting DPP4 degradation. Our findings identify a previously unrecognized mechanism of DPP4 up-regulation in CAVD, suggesting that DUSP26 silencing or inhibition is a viable therapeutic strategy to impede CAVD progression.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Calcinosis , Fosfatasas de Especificidad Dual , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/genética , Calcinosis/metabolismo , Células Cultivadas , Dipeptidil Peptidasa 4 , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Ratones , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , Ubiquitinación
6.
Circulation ; 139(21): 2451-2465, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30866650

RESUMEN

BACKGROUND: Molecular targeted chemotherapies have been shown to significantly improve the outcomes of patients who have cancer, but they often cause cardiovascular side effects that limit their use and impair patients' quality of life. Cardiac dysfunction induced by these therapies, especially trastuzumab, shows a distinct cardiotoxic clinical phenotype in comparison to the cardiotoxicity induced by conventional chemotherapies. METHODS: We used the human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) platform to determine the underlying cellular mechanisms in trastuzumab-induced cardiac dysfunction. We assessed the effects of trastuzumab on structural and functional properties in iPSC-CMs from healthy individuals and performed RNA-sequencing to further examine the effect of trastuzumab on iPSC-CMs. We also generated human induced pluripotent stem cells from patients receiving trastuzumab and examined whether patients' phenotype could be recapitulated in vitro by using patient-specific iPSC-CMs. RESULTS: We found that clinically relevant doses of trastuzumab significantly impaired the contractile and calcium-handling properties of iPSC-CMs without inducing cardiomyocyte death or sarcomeric disorganization. RNA-sequencing and subsequent functional analysis revealed mitochondrial dysfunction and altered the cardiac energy metabolism pathway as primary causes of trastuzumab-induced cardiotoxic phenotype. Human iPSC-CMs generated from patients who received trastuzumab and experienced severe cardiac dysfunction were more vulnerable to trastuzumab treatment than iPSC-CMs generated from patients who did not experience cardiac dysfunction following trastuzumab therapy. It is important to note that metabolic modulation with AMP-activated protein kinase activators could avert the adverse effects induced by trastuzumab. CONCLUSIONS: Our results indicate that alterations in cellular metabolic pathways in cardiomyocytes could be a key mechanism underlying the development of cardiac dysfunction following trastuzumab therapy; therefore, targeting the altered metabolism may be a promising therapeutic approach for trastuzumab-induced cardiac dysfunction.


Asunto(s)
Antineoplásicos Inmunológicos/toxicidad , Neoplasias de la Mama/tratamiento farmacológico , Cardiopatías/inducido químicamente , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Trastuzumab/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Señalización del Calcio/efectos de los fármacos , Cardiotoxicidad , Estudios de Casos y Controles , Línea Celular , Metabolismo Energético/efectos de los fármacos , Femenino , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Contracción Miocárdica/efectos de los fármacos , Fenotipo , Factores de Riesgo , Transcriptoma/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 114(52): E11111-E11120, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29203658

RESUMEN

Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.


Asunto(s)
Diferenciación Celular , Metilación de ADN , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Técnicas de Transferencia Nuclear , Células Endoteliales/citología , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
8.
Eur Heart J ; 40(45): 3685-3695, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31219556

RESUMEN

AIMS: Diastolic dysfunction (DD) is common among hypertrophic cardiomyopathy (HCM) patients, causing major morbidity and mortality. However, its cellular mechanisms are not fully understood, and presently there is no effective treatment. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold great potential for investigating the mechanisms underlying DD in HCM and as a platform for drug discovery. METHODS AND RESULTS: In the present study, beating iPSC-CMs were generated from healthy controls and HCM patients with DD. Micropatterned iPSC-CMs from HCM patients showed impaired diastolic function, as evidenced by prolonged relaxation time, decreased relaxation rate, and shortened diastolic sarcomere length. Ratiometric Ca2+ imaging indicated elevated diastolic [Ca2+]i and abnormal Ca2+ handling in HCM iPSC-CMs, which were exacerbated by ß-adrenergic challenge. Combining Ca2+ imaging and traction force microscopy, we observed enhanced myofilament Ca2+ sensitivity (measured as dF/Δ[Ca2+]i) in HCM iPSC-CMs. These results were confirmed with genome-edited isogenic iPSC lines that carry HCM mutations, indicating that cytosolic diastolic Ca2+ overload, slowed [Ca2+]i recycling, and increased myofilament Ca2+ sensitivity, collectively impairing the relaxation of HCM iPSC-CMs. Treatment with partial blockade of Ca2+ or late Na+ current reset diastolic Ca2+ homeostasis, restored diastolic function, and improved long-term survival, suggesting that disturbed Ca2+ signalling is an important cellular pathological mechanism of DD. Further investigation showed increased expression of L-type Ca2+channel (LTCC) and transient receptor potential cation channels (TRPC) in HCM iPSC-CMs compared with control iPSC-CMs, which likely contributed to diastolic [Ca2+]i overload. CONCLUSION: In summary, this study recapitulated DD in HCM at the single-cell level, and revealed novel cellular mechanisms and potential therapeutic targets of DD using iPSC-CMs.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca Diastólica/fisiopatología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/genética , Estudios de Casos y Controles , Diferenciación Celular , Insuficiencia Cardíaca Diastólica/tratamiento farmacológico , Insuficiencia Cardíaca Diastólica/mortalidad , Humanos , Mutación , Cadenas Pesadas de Miosina/genética , Fenotipo , Sarcómeros/fisiología , Troponina T/genética
10.
Circulation ; 138(23): 2666-2681, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29914921

RESUMEN

BACKGROUND: The progression toward low-cost and rapid next-generation sequencing has uncovered a multitude of variants of uncertain significance (VUS) in both patients and asymptomatic "healthy" individuals. A VUS is a rare or novel variant for which disease pathogenicity has not been conclusively demonstrated or excluded, and thus cannot be definitively annotated. VUS, therefore, pose critical clinical interpretation and risk-assessment challenges, and new methods are urgently needed to better characterize their pathogenicity. METHODS: To address this challenge and showcase the uncertainty surrounding genomic variant interpretation, we recruited a "healthy" asymptomatic individual, lacking cardiac-disease clinical history, carrying a hypertrophic cardiomyopathy (HCM)-associated genetic variant (NM_000258.2:c.170C>A, NP_000249.1:p.Ala57Asp) in the sarcomeric gene MYL3, reported by the ClinVar database to be "likely pathogenic." Human-induced pluripotent stem cells (iPSCs) were derived from the heterozygous VUS MYL3(170C>A) carrier, and their genome was edited using CRISPR/Cas9 to generate 4 isogenic iPSC lines: (1) corrected "healthy" control; (2) homozygous VUS MYL3(170C>A); (3) heterozygous frameshift mutation MYL3(170C>A/fs); and (4) known heterozygous MYL3 pathogenic mutation (NM_000258.2:c.170C>G), at the same nucleotide position as VUS MYL3(170C>A), lines. Extensive assays including measurements of gene expression, sarcomere structure, cell size, contractility, action potentials, and calcium handling were performed on the isogenic iPSC-derived cardiomyocytes (iPSC-CMs). RESULTS: The heterozygous VUS MYL3(170C>A)-iPSC-CMs did not show an HCM phenotype at the gene expression, morphology, or functional levels. Furthermore, genome-edited homozygous VUS MYL3(170C>A)- and frameshift mutation MYL3(170C>A/fs)-iPSC-CMs lines were also asymptomatic, supporting a benign assessment for this particular MYL3 variant. Further assessment of the pathogenic nature of a genome-edited isogenic line carrying a known pathogenic MYL3 mutation, MYL3(170C>G), and a carrier-specific iPSC-CMs line, carrying a MYBPC3(961G>A) HCM variant, demonstrated the ability of this combined platform to provide both pathogenic and benign assessments. CONCLUSIONS: Our study illustrates the ability of clustered regularly interspaced short palindromic repeats/Cas9 genome-editing of carrier-specific iPSCs to elucidate both benign and pathogenic HCM functional phenotypes in a carrier-specific manner in a dish. As such, this platform represents a promising VUS risk-assessment tool that can be used for assessing HCM-associated VUS specifically, and VUS in general, and thus significantly contribute to the arsenal of precision medicine tools available in this emerging field.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cardiomiopatías/patología , Variación Genética , Secuencia de Aminoácidos , Calcio/metabolismo , Cardiomiopatías/genética , Diferenciación Celular , Mutación del Sistema de Lectura , Edición Génica/métodos , Expresión Génica , Heterocigoto , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Alineación de Secuencia
12.
Biochem J ; 473(14): 2049-60, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27154203

RESUMEN

FK506-binding proteins 12.6 (FKBP12.6) and 12 (FKBP12) tightly associate with the cardiac ryanodine receptor (RyR2). Studies suggest that dissociation of FKBP12.6 from mutant forms of RyR2 contributes to store overload-induced Ca(2+) release (SOICR) and Ca(2+)-triggered arrhythmias. However, these findings are controversial. Previous studies focused on the effect of FKBP12.6 on the initiation of SOICR and did not explore changes in the termination of Ca(2+) release. Less is known about FKBP12. We aimed to determine the effect of FKBP12.6 and FKBP12 on the termination of SOICR. Using single-cell imaging, in cells expressing wild-type RyR2, we found that FKBP12.6 and FKBP12 significantly increase the termination threshold of SOICR without changing the activation threshold of SOICR. This effect, dependent on the association of each FKBP with RyR2, reduced the magnitude of Ca(2+) release but had no effect on the propensity for SOICR. In contrast, neither FKBP12.6 nor FKBP12 was able to regulate an arrhythmogenic variant of RyR2, despite a conserved protein interaction. Our results suggest that both FKBP12.6 and FKBP12 play critical roles in regulating RyR2 function by facilitating the termination of SOICR. The inability of FKBPs to mediate a similar effect on the mutant RyR2 represents a novel mechanism by which mutations within RyR2 lead to arrhythmia.


Asunto(s)
Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Arritmias Cardíacas/metabolismo , Células HEK293 , Humanos , Transporte Iónico/genética , Transporte Iónico/fisiología , Mutación , Unión Proteica/genética , Unión Proteica/fisiología , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/genética
13.
Biophys J ; 110(11): 2386-2396, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27276257

RESUMEN

At the single-channel level, oxidation of the cardiac ryanodine receptor (RyR2) is known to activate and inhibit the channel depending on the level of oxidation. However, the mechanisms through which these changes alter the activity of RyR2 in a cellular setting are poorly understood. In this study, we determined the effect of oxidation on a common form of RyR2 regulation; store overload-induced Ca(2+) release (SOICR). We found that oxidation resulted in concentration and time-dependent changes in the activation threshold for SOICR. Low concentrations of the oxidant H2O2 resulted in a decrease in the threshold for SOICR, which led to an increase in SOICR events. However, higher concentrations of H2O2, or prolonged exposure, reversed these changes and led to an increase in the threshold for SOICR. This increase in the threshold for SOICR in most cells was to such an extent that it led to the complete inhibition of SOICR. Acute exposure to high concentrations of H2O2 led to an initial decrease and then increase in the threshold for SOICR. In the majority of cells the increased threshold could not be reversed by the application of the reducing agent dithiothreitol. Therefore, our data suggest that low levels of RyR2 oxidation increase the channel activity by decreasing the threshold for SOICR, whereas high levels of RyR2 oxidation irreversibly increase the threshold for SOICR leading to an inhibition of RyR2. Combined, this indicates that oxidation regulates RyR2 by the same mechanism as phosphorylation, methylxanthines, and mutations, via changes in the threshold for SOICR.


Asunto(s)
Calcio/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Sustancias Reductoras/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética
14.
J Biol Chem ; 290(12): 7736-46, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25627681

RESUMEN

The NH2-terminal region (residues 1-543) of the cardiac ryanodine receptor (RyR2) harbors a large number of mutations associated with cardiac arrhythmias and cardiomyopathies. Functional studies have revealed that the NH2-terminal region is involved in the activation and termination of Ca(2+) release. The three-dimensional structure of the NH2-terminal region has recently been solved. It is composed of three domains (A, B, and C). However, the roles of these individual domains in Ca(2+) release activation and termination are largely unknown. To understand the functional significance of each of these NH2-terminal domains, we systematically deleted these domains and assessed their impact on caffeine- or Ca(2+)-induced Ca(2+) release and store overload-induced Ca(2+) release (SOICR) in HEK293 cells. We found that all deletion mutants were capable of forming caffeine- and ryanodine-sensitive functional channels, indicating that the NH2-terminal region is not essential for channel gating. Ca(2+) release measurements revealed that deleting domain A markedly reduced the threshold for SOICR termination but had no effect on caffeine or Ca(2+) activation or the threshold for SOICR activation, whereas deleting domain B substantially enhanced caffeine and Ca(2+) activation and lowered the threshold for SOICR activation and termination. Conversely, deleting domain C suppressed caffeine activation, abolished Ca(2+) activation and SOICR, and diminished protein expression. These results suggest that domain A is involved in channel termination, domain B is involved in channel suppression, and domain C is critical for channel activation and expression. Our data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations.


Asunto(s)
Calcio/metabolismo , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Western Blotting , Cafeína/farmacología , Células HEK293 , Humanos , Canal Liberador de Calcio Receptor de Rianodina/química
15.
Biochem J ; 467(1): 177-90, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25605235

RESUMEN

The cardiac Ca²âº release channel [ryanodine receptor type 2 (RyR2)] is modulated by thiol reactive agents, but the molecular basis of RyR2 modulation by thiol reagents is poorly understood. Cys³6³5 in the skeletal muscle RyR1 is one of the most hyper-reactive thiols and is important for the redox and calmodulin (CaM) regulation of the RyR1 channel. However, little is known about the role of the corresponding cysteine residue in RyR2 (Cys³6°²) in the function and regulation of the RyR2 channel. In the present study, we assessed the impact of mutating Cys³6°² (C³6°²A) on store overload-induced Ca²âº release (SOICR) and the regulation of RyR2 by thiol reagents and CaM. We found that the C³6°²A mutation suppressed SOICR by raising the activation threshold and delayed the termination of Ca²âº release by reducing the termination threshold. As a result, C³6°²A markedly increased the fractional Ca²âº release. Furthermore, the C³6°²A mutation diminished the inhibitory effect of N-ethylmaleimide on Ca²âº release, but it had no effect on the stimulatory action of 4,4'-dithiodipyridine (DTDP) on Ca²âº release. In addition, Cys³6°² mutations (C³6°²A or C³6°²R) did not abolish the effect of CaM on Ca²âº-release termination. Therefore, RyR2-Cys³6°² is a major site mediating the action of thiol alkylating agent N-ethylmaleimide, but not the action of the oxidant DTDP. Our data also indicate that residue Cys³6°² plays an important role in the activation and termination of Ca²âº release, but it is not essential for CaM regulation of RyR2.


Asunto(s)
Señalización del Calcio , Calmodulina/metabolismo , Cisteína/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Alquilación/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Señalización del Calcio/efectos de los fármacos , Calmodulina/química , Calmodulina/genética , Secuencia Conservada , Disulfuros/farmacología , Etilmaleimida/farmacología , Células HEK293 , Humanos , Cinética , Ratones , Oxidación-Reducción , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Piridinas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Reactivos de Sulfhidrilo/farmacología
16.
Clin Exp Pharmacol Physiol ; 42(6): 720-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25603835

RESUMEN

Ca(2+) is arguably the most important ion involved in the contraction of the heart. The cardiac ryanodine receptor (RyR2), the major Ca(2+) release channel located in the sarcoplasmic reticulum (SR) membrane, is responsible for releasing the bulk of Ca(2+) required for contraction. Moreover, RyR2 is also crucial for maintaining SR Ca(2+) homeostasis by releasing Ca(2+) from the SR when it becomes overloaded with Ca(2+) . During normal contraction, RyR2 is activated by cytosolic Ca(2+) , whereas during store overload conditions, the opening of RyR2 is governed by SR Ca(2+) . Although the process of the cytosolic control of RyR2 is well established, the molecular mechanism by which SR luminal Ca(2+) regulates RyR2 has only recently been elucidated and remains controversial. In addition to the activation of RyR2, SR luminal Ca(2+) also determines when the RyR2 channel closes. RyR2-mediated Ca(2+) release from the SR does not continue until the SR is completely depleted. Rather, it ceases when SR luminal Ca(2+) falls below a certain level. Given the importance of SR Ca(2+) , it is not surprising that the SR luminal Ca(2+) level is tightly controlled by SR Ca(2+) -buffering proteins. Consequently, the opening and closing of RyR2 is heavily influenced by the presence of such proteins, particularly those associated with RyR2, such as calsequestrin and the histidine-rich Ca(2+) -binding protein. These proteins appear to indirectly alter RyR2 activity by modifying the microdomain SR Ca(2+) level surrounding RyR2.


Asunto(s)
Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Humanos , Miocitos Cardíacos/patología , Retículo Sarcoplasmático/patología
17.
J Mol Cell Cardiol ; 74: 22-31, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24805197

RESUMEN

The Ser96Ala (S96A) mutation within the histidine rich Ca(2+) binding protein (HRC) has recently been linked to cardiac arrhythmias in idiopathic dilated cardiomyopathy patients, potentially attributable to an increase in spontaneous Ca(2+) release events. However, the molecular mechanism connecting the S96A mutation of HRC to increased Ca(2+) release events remains unclear. Previous findings by our group indicate that these spontaneous Ca(2+) release events may be linked to store overload induced Ca(2+) release (SOICR) via the cardiac ryanodine receptor (RyR2). Therefore, in the present study we sought to determine whether HRC wild type (HRC WT) and S96A mutant (HRC S96A) expression has a direct effect on SOICR. Using both cytosolic and intra-Ca(2+) store measurements in human embryonic kidney cells expressing RyR2, we found that HRC WT significantly inhibited the propensity for SOICR by buffering store free Ca(2+) and inhibiting store Ca(2+) uptake. In contrast, HRC S96A exhibited a markedly suppressed inhibitory effect on SOICR, which was attributed to an impaired ability to buffer store Ca(2+) and reduce store Ca(2+) uptake. In addition to impairing the ability of HRC to regulate bulk store Ca(2+), a proximity ligation assay demonstrated that the S96A mutation also disrupts the Ca(2+) microdomain around the RyR2, as it alters the Ca(2+) dependent association of RyR2 and HRC. Importantly, in contrast to previous reports, the absence of triadin in our experimental model illustrates that the S96A mutation in HRC can alter the propensity for SOICR without any interaction with triadin. Collectively, our results demonstrate that the human HRC mutation S96A leads to an increase in spontaneous Ca(2+) release and ultimately arrhythmias by disrupting the regulation of intra-store free Ca(2+). This is primarily due to an impaired ability to act as an effective bulk and local microdomain store Ca(2+) buffer.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Humanos , Transporte Iónico , Ratones , Miocitos Cardíacos/citología , Cultivo Primario de Células , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transducción de Señal , Transgenes
18.
Curr Protoc ; 4(7): e1101, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980221

RESUMEN

Cardiovascular diseases have emerged as one of the leading causes of human mortality, but the discovery of new drugs has been hindered by the absence of suitable in vitro platforms. In recent decades, continuously refined protocols for differentiating human induced pluripotent stem cells (hiPSCs) into hiPSC-derived cardiomyocytes (hiPSC-CMs) have significantly advanced disease modeling and drug screening; however, this has led to an increasing need to monitor the function of hiPSC-CMs. The precise regulation of action potentials (APs) and intracellular calcium (Ca2+) transients is critical for proper excitation-contraction coupling and cardiomyocyte function. These important parameters are usually adversely affected in cardiovascular diseases or under cardiotoxic conditions and can be measured using optical imaging-based techniques. However, this procedure is complex and technologically challenging. We have adapted the IonOptix system to simultaneously measure APs and Ca2+ transients in hiPSC-CMs loaded with the fluorescent dyes FluoVolt and Rhod 2, respectively. This system serves as a powerful high-throughput platform to facilitate the discovery of new compounds to treat cardiovascular diseases with the cellular phenotypes of abnormal APs and Ca2+ handling. Here, we present a comprehensive protocol for hiPSC-CM preparation, device setup, optical imaging, and data analysis. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Maintenance and seeding of hiPSC-CMs Basic Protocol 2: Simultaneous detection of action potentials and Ca2+ transients in hiPSC-CMs.


Asunto(s)
Potenciales de Acción , Calcio , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Imagen Óptica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Calcio/metabolismo , Imagen Óptica/métodos , Diferenciación Celular/efectos de los fármacos
19.
Med Rev (2021) ; 4(1): 68-85, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38515776

RESUMEN

Cardiovascular research has heavily relied on studies using patient samples and animal models. However, patient studies often miss the data from the crucial early stage of cardiovascular diseases, as obtaining primary tissues at this stage is impracticable. Transgenic animal models can offer some insights into disease mechanisms, although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression. In recent years, a promising breakthrough has emerged in the form of in vitro three-dimensional (3D) cardiovascular models utilizing human pluripotent stem cells. These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment. This advancement is pivotal as it addresses the existing gaps in cardiovascular research, allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models. In this review, we first outline various approaches employed to generate these models. We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions. Moreover, we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety. Despite their immense potential, challenges persist, particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs. However, overcoming these challenges could revolutionize cardiovascular research. It has the potential to offer comprehensive mechanistic insights into human-specific disease processes, ultimately expediting the development of personalized therapies.

20.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38367623

RESUMEN

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Asunto(s)
Corazón , Lisofosfolípidos , Esfingolípidos , Esfingosina/análogos & derivados , Animales , Esfingolípidos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA