Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 241: 117612, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951380

RESUMEN

This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.


Asunto(s)
Diclorofeno , Contaminantes Químicos del Agua , Adsorción , Oxidación-Reducción
2.
J Nanobiotechnology ; 21(1): 215, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422665

RESUMEN

It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Nanopartículas , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Oro/metabolismo , Administración por Inhalación , COVID-19/metabolismo , Sistemas de Liberación de Medicamentos , Pulmón/metabolismo , Preparaciones Farmacéuticas/metabolismo , Nanopartículas/uso terapéutico
3.
FASEB J ; 35(11): e21972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34613642

RESUMEN

The misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Metabolismo de los Lípidos , Animales , Porcinos
4.
FASEB J ; 35(1): e21166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184921

RESUMEN

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ingestión de Alimentos , Conducta Alimentaria , Obesidad , Animales , Masculino , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Conejos
5.
Inorg Chem ; 60(23): 17435-17439, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34797044

RESUMEN

A sodalite Cd66-cage-based metal-organic framework (MOF), namely, CPM-9S, has been constructed based on Cd9 and Cd5 metal-organic clusters (MOCs), which, to the best our knowledge, represents the first Cd-cage-based MOF that contains the highest-nuclear Cd-based MOC and the largest number of Cd2+ ions in a cage. The iodine adsorption performances in terms of the iodine adsorption capacity, adsorption isotherm, and adsorption kinetics, as well as the adsorption mechanism, have been further studied.

6.
Nanotechnology ; 32(35)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33984850

RESUMEN

Oxygen reduction reaction (ORR) occupies a pivotal position in fuel cell applications, and it is a challenge to obtain highly durable ORR catalysts. Herein, porous cobalt oxide microsphere growing at the surface of on nitrogen-doped graphitized-nano-diamond (CoOx/N-GND) was prepared using hydrothermal and subsequent heat treatment process. Porous cobalt oxide of high specific surface area could expose more surface Co2+that act as active sites than bulk one does. The doping of nitrogen also promotes the catalytic activity. Besides, nano-diamond (ND) ofsp3hybrid structure was used as an electronic conduction carriers of ultrahigh stability to improve the durability of catalytic composite. Prepared CoOx/N-GND shows a satisfactory half-wave potential of 0.82 V (versus RHE), which is close to that of Pt/C (0.85 V), an excellent methanol tolerance and a lower activity loss after 5000 cycles. These merits inspire the application of CoOx/N-GND as the cathode of Zn-air battery and the battery performance was evaluated in this work. In general, this work highlights an innovate approach to design and prepare highly durable catalyst.

7.
Ecotoxicol Environ Saf ; 193: 110342, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32109585

RESUMEN

Agricultural production of Ligusticum chuanxiong Hort. is often affected by heavy metal pollution in soil, especially mixtures of cadmium (Cd) and lead (Pb). We assessed metal-induced phytotoxicity in L. chuanxiong by exposing the plants to soil treated with Cd, Pb, or Cd/Pb mixtures. A combined Cd/Pb treatment alleviated the inhibition in plant growth, photosynthesis, and secondary metabolite generation seen in single-metal exposures in three of the four combinations. Most combined Cd/Pb treatments resulted in preferential uptake of magnesium, copper, and nitrogen in underground plant parts and accumulation of phosphorus and calcium in aboveground plant parts, thereby leading to improvements in photosynthetic potential. Compared with single-metal exposures, combined Cd/Pb treatment significantly decreased the contents of Cd by 16.67%-40.12% and Pb by 10.68%-21.70% in the plant, respectively. At the subcellular level, the Pb presence increased the Cd percentage associated with cell wall from 64.79% to 67.93% in rhizomes and from 32.76% to 45.32% in leaves, while Cd reduced Pb contents by 9.36%-46.39% in the subcellular fractions. A combined Cd/Pb treatment decreased the contents of water- and ethanol-extractable metal forms and increased the contents of acetic acid- and hydrochloric acid-extractable forms. The lower toxic effects of the Cd/Pb mixture in L. chuanxiong were associated with photosynthetic potential, subcellular distribution, the chemical forms of Cd and Pb, and synthesis of secondary metabolites. These findings are useful for plant production strategies in soils contaminated by heavy metals.


Asunto(s)
Cadmio/toxicidad , Plomo/toxicidad , Ligusticum/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Cadmio/farmacocinética , Calcio/metabolismo , Cobre/metabolismo , Interacciones Farmacológicas , Plomo/farmacocinética , Ligusticum/metabolismo , Magnesio/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/metabolismo , Metabolismo Secundario/efectos de los fármacos , Contaminantes del Suelo/farmacocinética
8.
Physiol Mol Biol Plants ; 26(5): 947-954, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32377044

RESUMEN

Saline-alkaline stress is one of the most serious global problems affecting agriculture, causing enormous economic and yield losses in agricultural production. Wheat, one of the most important crops worldwide, is often subjected to saline-alkaline stress. In this study, two wheat cultivars with different saline-alkaline tolerance, XC-12 (non-tolerance) and XC-45 (tolerance), were used to investigate the influence of saline-alkaline stress on photosynthesis and nitrogen (N) metabolism through hydroponic experiment with aim of elucidating the mechanism of resistance to salt-alkali. These results showed that saline-alkaline stress significantly reduced biomass accumulation, chlorophyll content, photosynthetic ability and N absorption but increased N utilization efficiency. There was no significant difference in photosynthesis between XC-12 and XC-45 under saline-alkaline stress. In addition, XC-45 had lower ratio of Na+/K+ in leaves and Na+-K+ selection rate and higher N absorption ability than XC-12, thereby improving physiological metabolism. Moreover, the roots exhibited greater growth performance in response to saline-alkaline stress as a result of increasing glutamine synthetase activity in roots, thus promoting N metabolism in roots. By coordinating the synergistic effect of increasing soluble protein in root, XC-45 exhibited greater tolerance to saline-alkaline stress. All data pinpoint that the root physiological function was more responsible for resistance to saline-alkaline stress in wheat.

9.
Nanotechnology ; 30(39): 395402, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31234158

RESUMEN

Electronic quality of chemical vapor deposited MoS2 is a function of crystallinity, which tends to decline with decrease in deposition temperature. Conventional thermal annealing can improve the quality but requires very high temperatures. In this study, we investigate a novel low temperature (room temperature to 400 °C) annealing process that exploits the electron wind force during passage of current. Here, moderate current density gives rise to atomic scale mechanical force whenever the electrons encounter defects in the lattice or grain boundaries (GBs). After hypothesizing that this force can significantly enhance defect mobility without any temperature field, we demonstrate the process using in situ transmission electron microscope and molecular dynamics simulation. Monolayer metal organic chemical vapor deposited MoS2 deposited at 400 °C was post processed at temperature as low as 20 °C. Experimental results show five times enhancement in electrical conductivity, which is supported by electron diffraction patterns indicating significant grain growth. Discrete spots in diffraction indicate evolution of high crystallinity even at room temperature. Our computational model shows the mechanisms behind healing lattice defects as well as reorienting the GBs. The enhancement in microstructure of the specimen is also reflected in mechanical properties simulations on pre- and post-annealed specimens.

10.
Nano Lett ; 18(3): 1849-1855, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29415536

RESUMEN

A two-dimensional (2D) heterobilayer system consisting of MoS2 on WSe2, deposited on epitaxial graphene, is studied by scanning tunneling microscopy and spectroscopy at temperatures of 5 and 80 K. A moiré pattern is observed, arising from lattice mismatch of 3.7% between the MoS2 and WSe2. Significant energy shifts are observed in tunneling spectra observed at the maxima of the moiré corrugation, as compared with spectra obtained at corrugation minima, consistent with prior work. Furthermore, at the minima of the moiré corrugation, sharp peaks in the spectra at energies near the band edges are observed for spectra acquired at 5 K. The peaks correspond to discrete states that are confined within the moiré unit cells. Conductance mapping is employed to reveal the detailed structure of the wave functions of the states. For measurements at 80 K, the sharp peaks in the spectra are absent, and conductance maps of the band edges reveal little structure.

11.
Am J Physiol Renal Physiol ; 315(6): F1658-F1669, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30280599

RESUMEN

Muscle dysfunction is an important cause of morbidity among patients with chronic kidney disease (CKD). Although muscle fibrosis is present in a CKD rodent model, its existence in humans and its impact on physical function are currently unknown. We examined isometric leg extension strength and measures of skeletal muscle fibrosis and inflammation in vastus lateralis muscle from CKD patients ( n = 10) and healthy, sedentary controls ( n = 10). Histochemistry and immunohistochemistry were used to assess muscle collagen and macrophage and fibro/adipogenic progenitor (FAP) cell populations, and RT-qPCR was used to assess muscle-specific inflammatory marker expression. Muscle collagen content was significantly greater in CKD compared with control (18.8 ± 2.1 vs. 11.7 ± 0.7% collagen area, P = 0.008), as was staining for collagen I, pro-collagen I, and a novel collagen-hybridizing peptide that binds remodeling collagen. Muscle collagen was inversely associated with leg extension strength in CKD ( r = -0.74, P = 0.01). FAP abundance was increased in CKD, was highly correlated with muscle collagen ( r = 0.84, P < 0.001), and was inversely associated with TNF-α expression ( r = -0.65, P = 0.003). TNF-α, CD68, CCL2, and CCL5 mRNA were significantly lower in CKD than control, despite higher serum TNF-α and IL-6. Immunohistochemistry confirmed fewer CD68+ and CD11b+ macrophages in CKD muscle. In conclusion, skeletal muscle collagen content is increased in humans with CKD and is associated with functional parameters. Muscle fibrosis correlated with increased FAP abundance, which may be due to insufficient macrophage-mediated TNF-α secretion. These data provide a foundation for future research elucidating the mechanisms responsible for this newly identified human muscle pathology.


Asunto(s)
Contracción Isométrica , Fuerza Muscular , Debilidad Muscular/etiología , Miositis/etiología , Músculo Cuádriceps/fisiopatología , Insuficiencia Renal Crónica/complicaciones , Anciano , Estudios de Casos y Controles , Colágeno/metabolismo , Estudios Transversales , Femenino , Fibrosis , Estado de Salud , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/fisiopatología , Miositis/diagnóstico , Miositis/metabolismo , Miositis/fisiopatología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/fisiopatología , Índice de Severidad de la Enfermedad
12.
Nanotechnology ; 28(36): 365703, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28675751

RESUMEN

We present in-situ transmission electron microscopy of crack propagation in a freestanding monolayer MoS2 and molecular dynamic analysis of the underlying mechanisms. Chemical vapor deposited monolayer MoS2 was transferred from sapphire substrate using interfacial etching for defect and contamination minimization. Atomic resolution imaging shows crack tip atoms sustaining 14.5% strain before bond breaking, while the stress field decays at unprecedented rate of 2.15 GPa Å-1. Crack propagation is seen mostly in the zig-zag direction in both model and experiment, suggesting that the mechanics of fracture is not brittle. Our computational model captures the mechanics of the experimental observations on crack propagation in MoS2. While molybdenum atoms carry most of the mechanical load, we show that the sliding motion of weakly bonded sulphur atoms mediate crack tip stress relaxation, which helps the tip sustain very high, localized stress levels.

13.
Nano Lett ; 15(10): 6586-91, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26349430

RESUMEN

Substitutional doping of transition metal dichalcogenides (TMDs) may provide routes to achieving tunable p-n junctions, bandgaps, chemical sensitivity, and magnetism in these materials. In this study, we demonstrate in situ doping of monolayer molybdenum disulfide (MoS2) with manganese (Mn) via vapor phase deposition techniques. Successful incorporation of Mn in MoS2 leads to modifications of the band structure as evidenced by photoluminescence and X-ray photoelectron spectroscopy, but this is heavily dependent on the choice of substrate. We show that inert substrates (i.e., graphene) permit the incorporation of several percent Mn in MoS2, while substrates with reactive surface terminations (i.e., SiO2 and sapphire) preclude Mn incorporation and merely lead to defective MoS2. The results presented here demonstrate that tailoring the substrate surface could be the most significant factor in substitutional doping of TMDs with non-TMD elements.

14.
Front Microbiol ; 15: 1344992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476945

RESUMEN

Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.

15.
Materials (Basel) ; 16(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36676605

RESUMEN

TiO2/Au/BDD composites with a Z-scheme structure was prepared by orderly depositing gold (Au) and titanium dioxide (TiO2) on the surface of a boron-doped diamond (BDD) film using sputtering and electrophoretic deposition methods. It was found that the introduction of Au between TiO2 and the BDD, not only could reduce their contact resistance, to increase the carrier transport efficiency, but also could improve the surface Hall mobility of the BDD electrode. Meanwhile, the designed Z-scheme structure provided a fast channel for the electrons and holes combination, to promote the effective separation of the electrons and holes produced in TiO2 and the BDD under photoirradiation. The electrochemical characterization elucidated that these modifications of the structure obviously enhanced the electrocatalytic performance of the electrode, which was further verified by the simulated wastewater degradation experiments with reactive brilliant red X-3B. In addition, it was also found that the photoirradiation effectively enhanced the pollution degradation efficiency of the modified electrode, especially for the TiO2/Au/BDD-30 electrode.

16.
Animals (Basel) ; 13(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37685006

RESUMEN

Mammals exhibit circadian rhythms in their behavior and physiological activities to adapt to the diurnal changes of the environment. Improper feeding methods can disrupt the natural habits of animals and harm animal health. This study investigated the effects of feeding amount and feeding time on growing rabbits in northern China during spring. A total of 432 healthy 35-day-old weaned rabbits with similar body weight were randomly assigned to four groups: whole day diet-unrestricted feeding (WUF), whole day diet-restricted feeding (WRF), nighttime diet-unrestricted feeding (NUF), and nighttime diet-restricted feeding (NRF). The results showed that nighttime diet-unrestricted feeding improved performance, circadian rhythm of behavior, and body temperature, while reducing the risk of diarrhea and death. WRF group increased daytime body temperature but had no significant difference in feed conversion rate. The study suggests that nighttime diet-unrestricted feeding in spring can improve the growth and welfare of rabbits in northern China. Our study underscores the pivotal role of feeding timing in enhancing animal health. Future investigations should delve into the underlying mechanisms and expand the application of this strategy across seasons and regions to improve rabbit husbandry practices.

18.
Sci Total Environ ; 837: 155897, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35569656

RESUMEN

Variations in litter decomposition and nutrient migration are constraints to accurately estimate watershed diffuse forest pollution under the combined effects of topographic heterogeneity and climate change. In this study, remote sensing data, decomposition and leaching experiments, and the Soil and Water Assessment Tool (SWAT) were used to quantify the release, export, and transport characteristics of diffuse nutrients from forest litter under two climate scenarios (the current climate condition [S1] and the future warming and drying climate condition [S2]), and the impacts on aquatic environment were identified. The annual litter decomposition was 27.80 × 106 t in S2, which was 1.39 times that of S1. Additionally, the annual litter nutrient release in S2 (C, N, and P was 8.65 × 106, 3.31 × 105, and 1.57 × 104 t, respectively) also increased by 31.16%-45.62% compared with that of S1. The spatial patterns of nutrient export showed that the annual exports of C, N, and P in S1 were 109.77, 46.85, and 0.43 kg/ha, respectively. The annual nutrient export in S2 increased by 1.44 times, and S2 also had higher values of nutrient transport. In addition, variation trends of temperature and precipitation increased significantly with increasing altitude, which promoted differences in nutrient transport between S1 and S2 in the high-altitude areas. The response analysis of the diffuse nutrient in surface water also indicated that forest nutrient discharge load were critical factors affecting the aquatic environmental quality. This study indicated that climate warming accelerated litter decomposition and made litter a potential source of diffuse forest pollution, and watershed discharge load varied intensively with the terrestrial conditions. The combination of experiments and modeling can improve the accuracy of diffuse forest pollution simulation and provide valuable information for formulating watershed climate change adaptation strategies.


Asunto(s)
Bosques , Suelo , Cambio Climático , Ecosistema , Nutrientes , Hojas de la Planta , Agua
19.
Artículo en Inglés | MEDLINE | ID: mdl-36360720

RESUMEN

With the rapid development of breeding industry, the efficient treatment of dramatically increasing swine wastewater is gradually becoming urgent. In particular, the development of application technologies suitable for the relatively small piggeries is critical due to the time cost and space requirements of conventional biological methods. In this study, Electrochemical oxidation (EO) was selected to systematically explore the treatment performance of three different swine wastewaters by Ti4O7 anode. It was observed that the colors changed from dark brown to light yellow after 60 min treatment at 50 mA/cm2, and the removal rates of turbidity and suspended solids ranged from 89.36% to 93.65% and 81.31% to 92.55%, respectively. The chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) of all the three swine wastewaters were simultaneously removed to a very low concentration in 120 min, especially for sample III, 61 ± 9 mg/L of COD, 6.6 ± 0.4 mg/L of NH3-N and 5.7 ± 1.1 mg/L of TP, which met the Discharge Standard of Pollutants for Livestock and Poultry Breeding (GB 18596-2001). Moreover, 70.93%-85.37% mineralization rates were also achieved in 120 min, confirming that EO treatment by Ti4O7 could efficiently remove the organic matters in wastewater. Excitation-emission matrix (EEM) and UV-vis spectrum characterization results further proved that aromatic compounds and macromolecules in wastewater were rapidly removed, which played important roles in the mineralization processes. The findings here provided an efficient and environment-friendly technology for swine wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Porcinos , Animales , Aguas Residuales , Titanio/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Electrodos , Oxidación-Reducción , Fósforo , Eliminación de Residuos Líquidos/métodos
20.
Front Cell Infect Microbiol ; 11: 771088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976857

RESUMEN

The circadian misalignment of the gut microbiota caused by unusual eating times in adult animals is related to disease development. However, whether the composition and diurnal rhythm of gut microbiota can be optimized by synchronizing the window period of eating with natural eating habits to reduce the risk of diarrhea remains unclear, especially in growing animals. In this study, 108 5-week-old weaned rabbits (nocturnal animals) were randomly subjected to daytime feeding (DF) and night-restricted feeding (NRF). At age 12 weeks, six rabbits were selected from each group, and caecum and cecal contents, as well as serum samples were collected at 4-h intervals during 24 h. Overall, NRF was found to reduce the risk of diarrhea in growing rabbits, improved the diurnal rhythm and abundance of beneficial microorganisms, along with the production of beneficial metabolites, whereas reduced the abundance of potential pathogens (Synergistes, Desulfovibrio, and Alistipes). Moreover, NRF improved diurnal rhythm of tryptophan hydroxylase isoform 1 and serotonin. Furthermore, NRF strengthened the diurnal amplitude of body core temperature, and promoted the diurnal expression of intestinal clock genes (BMAL1, CLOCK, REV-ERBα, and PER1), and genes related to the regulation of the intestinal barrier (CLAUDIN-1), and intestinal epithelial cell self-proliferation and renewal (BMI1). In vitro simulation experiments further revealed that synchronization of microbial-driven serotonin rhythm and eating activity-driven body temperature oscillations, which are important zeitgebers, could promote the diurnal expression of clock genes and CLAUDIN-1 in rabbit intestinal epithelial cells (RIEC), and enhance RIEC proliferation. This is the first study to reveal that NRF reprograms the diurnal rhythm of the gut microbiome, promotes the diurnal expression of clock genes and tight junction genes via synchronization of microbial-driven serotonin rhythm and eating activity-driven body temperature oscillations, thereby improving intestinal health and reducing the risk of diarrhea in growing rabbits. Collectively, these results provide a new perspective for the healthy feeding and management of growing animals.


Asunto(s)
Temperatura Corporal , Serotonina , Animales , Ritmo Circadiano , Conducta Alimentaria , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA