Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Public Health ; 24(1): 1366, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773415

RESUMEN

BACKGROUND: Oxidative stress is closely related to gut health. Exposures to oxidative stress in one's diet and lifestyle can be evaluated by the oxidative balance score (OBS). However, the relationship between OBS and intestinal habits is unknown. This study aimed to investigate the relationships between OBS and intestinal habits (chronic diarrhea and chronic constipation) and the underlying mechanisms involved. METHODS: Using data from the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, we included a total of 8065 participants. Twenty dietary and lifestyle factors were selected for the OBS calculates. Chronic constipation and chronic diarrhea were defined using the Bristol stool form scale (BSFS) types 1 and 2 and the BSFS 6 and 7, respectively. Multivariate logistic regression, subgroup analysis, and restricted cubic splines (RCS) analysis were used to evaluate the relationship between OBS and defecation habits. Finally, we used mediation analysis to explore the indirect effects of oxidative stress and inflammatory markers on these associations. RESULTS: After adjusting for all the covariates, multivariate logistic regression analysis revealed that OBS was negatively correlated with diarrhea (OR = 0.57; 95%CI = 0.39-0.83; P = 0.008)and positively correlated with constipation (OR = 1.75; 95%CI = 1.19-2.25; P = 0.008). The RCS showed a nonlinear relationship between OBS and diarrhea (P for nonlinearity = 0.02) and a linear relationship between OBS and constipation (P for nonlinearity = 0.19). Mediation analysis showed that the C-reactive protein (CRP) concentration and white blood cell (WBC) count mediated the correlation between OBS and diarrhea by 6.28% and 6.53%, respectively (P < 0.05). CONCLUSIONS: OBS is closely related to changes in patients' defecation habits. Oxidative stress and inflammation may play a role in the relationship between the two. This result emphasizes the importance of the public adjusting their lifestyle and dietary habits according to their own situation. However, further prospective studies are needed to analyze the relationship between oxidative stress and changes in defecation habits.


Asunto(s)
Estreñimiento , Diarrea , Encuestas Nutricionales , Estrés Oxidativo , Humanos , Estreñimiento/epidemiología , Estrés Oxidativo/fisiología , Femenino , Diarrea/epidemiología , Masculino , Persona de Mediana Edad , Adulto , Enfermedad Crónica , Estilo de Vida , Anciano , Estudios Transversales
2.
BMC Infect Dis ; 23(1): 485, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474887

RESUMEN

OBJECTIVES: Inconsistent evidence currently exists regarding the associations between Helicobacter Pylori (H. pylori) infection and body mass index (BMI). The goal of the current study was to examine independent associations of H. pylori immunoglobulin G (IgG) seropositivity and BMI in a U.S.-based population sample. METHODS: The US National Health and Nutrition Examination Survey (NHANES) with 2,576 subjects from 1999 to 2000 were analyzed. Using multivariate logistic regression models, associations between H. pylori IgG seropositivity and BMI were calculated after potential confounders were taken into account. Subgroup analyses were conducted furtherly stratified by sex, age, and race. RESULTS: H. pylori IgG seropositivity was not associated with BMI in the general population (OR = 0.998; 95% CI = 0.977-1.019; P = 0.842). In the subgroup analyses stratified by race, a negative correction was found between the H. pylori IgG seropositivity and BMI among other races (OR = 0.873; 95% CI = 0.795-0.959; P = 0.004) except non-Hispanic white (OR = 1.006, 95% CI 0.966 to 1.048, P = 0.762), non-Hispanic black (OR = 1.021, 95% CI 0.979 to 1.065, P = 0.335), and Mexican American (OR = 1.010, 95% CI 0.966 to 1.055, P = 0.665). CONCLUSIONS: In the general population, H. pylori IgG seropositivity is not associated with increased BMI, which provides a new perspective on obesity management.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Adulto , Humanos , Índice de Masa Corporal , Encuestas Nutricionales , Modelos Logísticos , Inmunoglobulina G , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/diagnóstico , Anticuerpos Antibacterianos
3.
J Immunol ; 207(11): 2754-2769, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34759016

RESUMEN

African swine fever is a severe animal infectious disease caused by African swine fever virus (ASFV), and the morbidity and mortality associated with virulent ASFV isolates are as high as 100%. Previous studies showed that the ability of ASFV to antagonize IFN production is closely related to its pathogenicity. Here, we report that ASFV HLJ/18 infection induced low levels of type I IFN and inhibited cGMP-AMP-induced type I IFN production in porcine alveolar macrophages that were isolated from specific pathogen-free Landrace piglets. Subsequently, an unbiased screen was performed to screen the ASFV genes with inhibitory effects on the type I IFN production. ASFV pI215L, a viral E2 ubiquitin-conjugating enzyme, was identified as one of the strongest inhibitory effectors on the production of type I IFN. Knockdown of pI215L expression inhibited ASFV replication and enhanced IFN-ß production. However, inhibition of type I IFN production by pI215L was independent of its E2 enzyme activity. Furthermore, we found that pI215L inhibited type I IFN production and K63-linked polyubiquitination of TANK-binding kinase 1 through pI215L-binding RING finger protein 138 (RNF138). ASFV pI215L enhanced the interaction between RNF138 and RNF128 and promoted RNF138 to degrade RNF128, which resulted in reduced K63-linked polyubiquitination of TANK-binding kinase 1 and type І IFN production. Taken together, our findings reveal a novel immune escape mechanism of ASFV, which provides a clue to the design and development of an immune-sensitive attenuated live vaccine.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Nucleotidiltransferasas/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Células Cultivadas , Células HEK293 , Humanos , Transducción de Señal/inmunología , Ubiquitinación
5.
Biochem J ; 474(12): 2051-2065, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28487378

RESUMEN

TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Virus de la Encefalomiocarditis/enzimología , Quinasa I-kappa B/antagonistas & inhibidores , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Interferón Tipo I/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteasas Virales 3C , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Perros , Eliminación de Gen , Humanos , Quinasa I-kappa B/química , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Factor 3 Regulador del Interferón/química , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Mesocricetus , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/química , Proteínas Virales/genética
6.
BMC Med Inform Decis Mak ; 18(Suppl 1): 18, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29589571

RESUMEN

BACKGROUND: De-identification is the first step to use these records for data processing or further medical investigations in electronic medical records. Consequently, a reliable automated de-identification system would be of high value. METHODS: In this paper, a method of combining text skeleton and recurrent neural network is proposed to solve the problem of de-identification. Text skeleton is the general structure of a medical record, which can help neural networks to learn better. RESULTS: We evaluated our method on three datasets involving two English datasets from i2b2 de-identification challenge and a Chinese dataset we annotated. Empirical results show that the text skeleton based method we proposed can help the network to recognize protected health information. CONCLUSIONS: The comparison between our method and state-of-the-art frameworks indicates that our method achieves high performance on the problem of medical record de-identification.


Asunto(s)
Anonimización de la Información , Registros Electrónicos de Salud , Redes Neurales de la Computación , Humanos
7.
Front Immunol ; 15: 1447060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091500

RESUMEN

Transplantations represent the principal therapeutic interventions for terminal organ failure, a procedure that has salvaged myriad lives annually. Ischemia/reperfusion injury (IRI) is frequently correlated with an unfavourable prognosis and is relevant for early graft dysfunction and graft survival. IRI constitutes a complex pathological state influenced by a series of factors such as oxidative stress, metabolic stress, leukocytic infiltration, programmed cell death pathways, and inflammatory immune responses. Reducing ischemia/reperfusion injury is one of the main directions of transplantation research. Toll-like receptors (TLRs) are important pattern-recognition receptors expressed on various organs that orchestrate the immune responses upon recognising PAMPs and DAMPs. Targeting the TLR4 signalling has recently been suggested as a promising approach for alleviating IRI by affecting inflammation, oxidative stress and programmed cell death (PCD). In this minireview, we summarise the role of TLR4 signalling in regulating inflammation, oxidative stress and PCD in organ transplantation and discuss their interactions during IRI. A detailed understanding of the multiple functions of TLR4 in IRI provides novel insights into developing therapies to improve organ transplantation outcomes.


Asunto(s)
Apoptosis , Inflamación , Trasplante de Órganos , Estrés Oxidativo , Daño por Reperfusión , Transducción de Señal , Receptor Toll-Like 4 , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Receptor Toll-Like 4/metabolismo , Humanos , Trasplante de Órganos/efectos adversos , Animales , Inflamación/inmunología , Inflamación/metabolismo
8.
Front Immunol ; 15: 1352479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426093

RESUMEN

The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.


Asunto(s)
Interferón Tipo I , Virosis , Humanos , Inflamación , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Estrés Oxidativo , Autofagia
9.
Front Endocrinol (Lausanne) ; 15: 1404697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38982993

RESUMEN

Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.


Asunto(s)
Adipogénesis , Autofagia , Inflamación , Estrés Oxidativo , Adipogénesis/fisiología , Humanos , Autofagia/fisiología , Estrés Oxidativo/fisiología , Inflamación/metabolismo , Inflamación/patología , Animales , Adipocitos/metabolismo , Adipocitos/patología , Obesidad/metabolismo , Obesidad/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología
10.
Math Biosci Eng ; 20(7): 13379-13397, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37501492

RESUMEN

Cardiovascular disease has a significant impact on both society and patients, making it necessary to conduct knowledge-based research such as research that utilizes knowledge graphs and automated question answering. However, the existing research on corpus construction for cardiovascular disease is relatively limited, which has hindered further knowledge-based research on this disease. Electronic medical records contain patient data that span the entire diagnosis and treatment process and include a large amount of reliable medical information. Therefore, we collected electronic medical record data related to cardiovascular disease, combined the data with relevant work experience and developed a standard for labeling cardiovascular electronic medical record entities and entity relations. By building a sentence-level labeling result dictionary through the use of a rule-based semi-automatic method, a cardiovascular electronic medical record entity and entity relationship labeling corpus (CVDEMRC) was constructed. The CVDEMRC contains 7691 entities and 11,185 entity relation triples, and the results of consistency examination were 93.51% and 84.02% for entities and entity-relationship annotations, respectively, demonstrating good consistency results. The CVDEMRC constructed in this study is expected to provide a database for information extraction research related to cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Registros Electrónicos de Salud , Humanos , Enfermedades Cardiovasculares/epidemiología , Almacenamiento y Recuperación de la Información , Lenguaje , Bases de Datos Factuales
11.
World J Gastrointest Oncol ; 15(12): 2169-2184, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173433

RESUMEN

BACKGROUND: Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome. AIM: To analyze of the relationship between 486 blood metabolites and GERD. METHODS: Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software. RESULTS: In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD. CONCLUSION: Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.

12.
Front Vet Sci ; 10: 1158585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008344

RESUMEN

Currently, porcine coronaviruses are prevalent in pigs, and due to the outbreak of COVID-19, porcine coronaviruses have become a research hotspot. porcine epidemic diarrhea virus (PEDV), Transmissible Gastroenteritis Virus (TGEV), and Porcine Deltacoronavirus (PDCoV) mentioned in this study mainly cause diarrhea in pigs. These viruses cause significant economic losses and pose a potential public health threat. In this study, specific primers and probes were designed according to the M gene of PEDV, the S gene of TGEV, and the M gene of PDCoV, respectively, and TaqMan probe-based multiplex real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was developed for the simultaneous detection of PEDV, TGEV, and PDCoV. This method has high sensitivity and specificity, and the detection limit of each virus can reach 2.95 × 100 copies/µl. An assay of 160 clinical samples from pigs with diarrhea showed that the positive rates of PEDV, TGEV, and PDCoV were 38.13, 1.88, and 5.00%; the coinfection rates of PEDV+TGEV, PEDV+PDCoV, TGEV+PDCoV, PEDV+TGEV+PDCoV were 1.25, 1.25, 0, 0.63%, respectively. The positive coincidence rates of the multiplex qRT-PCR and single-reaction qRT-PCR were 100%. This method is of great significance for clinical monitoring of the porcine enteric diarrhea virus and helps reduce the loss of the breeding industry and control the spread of the disease.

13.
Cells ; 12(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443803

RESUMEN

Gram-negative bacterial infections pose a significant threat to public health. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and induces innate immune responses, autophagy, and cell death, which have major impacts on the body's physiological homeostasis. However, the role of TLR4 in bacterial LPS-induced autophagy and apoptosis in large mammals, which are closer to humans than rodents in many physiological characteristics, remains unknown. So far, few reports focus on the relationship between TLR, autophagy, and apoptosis in large mammal levels, and we urgently need more tools to further explore their crosstalk. Here, we generated a TLR4-enriched mammal model (sheep) and found that a high-dose LPS treatment blocked autophagic degradation and caused strong innate immune responses and severe apoptosis in monocytes/macrophages of transgenic offspring. Excessive accumulation of autophagosomes/autolysosomes might contribute to LPS-induced apoptosis in monocytes/macrophages of transgenic animals. Further study demonstrated that inhibiting TLR4 downstream NF-κB or p38 MAPK signaling pathways reversed the LPS-induced autophagy activity and apoptosis. These results indicate that the elevated TLR4 aggravates LPS-induced monocytes/macrophages apoptosis by leading to lysosomal dysfunction and impaired autophagic flux, which is associated with TLR4 downstream NF-κB and MAPK signaling pathways. This study provides a novel TLR4-enriched mammal model to study its potential effects on autophagy activity, inflammation, oxidative stress, and cell death. These findings also enrich the biological functions of TLR4 and provide powerful evidence for bacterial infection.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Humanos , Animales , Ovinos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Apoptosis , Mamíferos/metabolismo , Autofagia
14.
Animals (Basel) ; 13(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958075

RESUMEN

Haemophilus parasuis (H. parasuis, HPS) is a prominent pathogenic bacterium in pig production. Its infection leads to widespread fibrinous inflammation in various pig tissues and organs, often in conjunction with various respiratory virus infections, and leads to substantial economic losses in the pig industry. Therefore, the rapid diagnosis of this pathogen is of utmost importance. In this study, we used recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR) technology to establish a convenient detection and analysis system for H. parasuis that is fast to detect, easy to implement, and accurate to analyze, known as RPA-CRISPR/Cas12a analysis. The process from sample to results can be completed within 1 h with high sensitivity (0.163 pg/µL of DNA template, p < 0.05), which is 104 -fold higher than the common PCR method. The specificity test results show that the RPA-CRISPR/Cas12a analysis of H. parasuis did not react with other common pig pathogens, including Streptococcus suis type II and IX, Actinobacillus pleuropneumoniae, Escherichia coli, Salmonella, Streptococcus suis, and Staphylococcus aureus (p < 0.0001). The RPA-CRISPR/Cas12a assay was applied to 15 serotypes of H. parasuis clinical samples through crude extraction of nucleic acid by boiling method, and all of the samples were successfully identified. It greatly reduces the time and cost of nucleic acid extraction. Moreover, the method allows results to be visualized with blue light. The accurate and convenient detection method could be incorporated into a portable format as point-of-care (POC) diagnostics detection for H. parasuis at the field level.

15.
Math Biosci Eng ; 19(10): 10006-10021, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-36031980

RESUMEN

Electronic Medical Record (EMR) is the data basis of intelligent diagnosis. The diagnosis results of an EMR are multi-disease, including normal diagnosis, pathological diagnosis and complications, so intelligent diagnosis can be treated as multi-label classification problem. The distribution of diagnostic results in EMRs is imbalanced. And the diagnostic results in one EMR have a high coupling degree. The traditional rebalancing methods does not function effectively on highly coupled imbalanced datasets. This paper proposes Double Decoupled Network (DDN) based intelligent diagnosis model, which decouples representation learning and classifier learning. In the representation learning stage, Convolutional Neural Networks (CNN) is used to learn the original features of the data. In the classifier learning stage, a Decoupled and Rebalancing highly Imbalanced Labels (DRIL) algorithm is proposed to decouple the highly coupled diagnostic results and rebalance the datasets, and then the balanced datasets is used to train the classifier. This paper evaluates the proposed DDN using Chinese Obstetric EMR (COEMR) datasets, and verifies the effectiveness and universality of the model on two benchmark multi-label text classification datasets: Arxiv Academic Papers Datasets (AAPD) and Reuters Corpus1 (RCV1). Demonstrating the effectiveness of the proposed methods is an imbalanced obstetric EMRs. The accuracy of DDN model on COEMR, AAPD and RCV1 datasets is 84.17, 86.35 and 93.87% respectively, which is higher than the current optimal experimental results.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Registros Electrónicos de Salud
16.
Math Biosci Eng ; 19(10): 10656-10672, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-36032011

RESUMEN

Extracting relational triples from unstructured medical texts can provide a basis for the construction of large-scale medical knowledge graphs. The cascade binary pointer tagging network (CBPTN) shows excellent performance in the joint entity and relation extraction, so we try to explore its effectiveness in the joint entity and relation extraction of Chinese medical texts. In this paper, we propose two models based on the CBPTN: CBPTN with conditional layer normalization (Cas-CLN) and biaffine transformation-based CBPTN with multi-head selection (BTCAMS). Cas-CLN uses the CBPTN to decode the head entity and relation-tail entity successively and utilizes conditional layer normalization to enhance the connection between the two steps. BTCAMS detects all possible entities in a sentence by using the CBPTN and then determines the relation between each entity pair through biaffine transformation. We test the performance of the two models on two Chinese medical datasets: CMeIE and CEMRDS. The experimental results prove the effectiveness of the two models. Compared with the baseline CasREL, the F1 value of Cas-CLN and BTCAMS on the test data of CMeIE improved by 1.01 and 2.13%; on the test data of CEMRDS, the F1 value improved by 1.99 and 0.68%.


Asunto(s)
Registros Electrónicos de Salud , Lenguaje , China
17.
Math Biosci Eng ; 19(10): 10533-10549, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36032005

RESUMEN

Diagnosis assistant is an effective way to reduce the workloads of professional doctors. The rich professional knowledge plays a crucial role in diagnosis. Therefore, it is important to introduce the relevant medical knowledge into diagnosis assistant. In this paper, diagnosis assistant is treated as a classification task, and a Graph-based Structural Knowledge-aware Network (GSKN) model is proposed to fuse Electronic Medical Records (EMRs) and medical knowledge graph. Considering that different information in EMRs affects the diagnosis results differently, the information in EMRs is categorized into general information, key information and numerical information, and is introduced to GSKN by adding an enhancement layer to the Bidirectional Encoder Representation from Transformers (BERT) model. The entities in EMRs are recognized, and Graph Convolutional Neural Networks (GCN) is employed to learn deep-level graph structure information and dynamic representation of these entities in the subgraphs. An interactive attention mechanism is utilized to fuse the enhanced textual representation and the deep representation of these subgraphs. Experimental results on Chinese Obstetric Electronic Medical Records (COEMRs) and open dataset C-EMRs demonstrate the effectiveness of our model.


Asunto(s)
Registros Electrónicos de Salud , Redes Neurales de la Computación , Femenino , Humanos , Embarazo
18.
Front Microbiol ; 13: 845137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237253

RESUMEN

Host's innate immunity is the front-line defense against viral infections, but some viruses have evolved multiple strategies for evasion of antiviral innate immunity. The porcine enteric coronaviruses (PECs) consist of porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), transmissible gastroenteritis coronavirus (TGEV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV), which cause lethal diarrhea in neonatal pigs and threaten the swine industry worldwide. PECs interact with host cells to inhibit and evade innate antiviral immune responses like other coronaviruses. Moreover, the immune escape of porcine enteric coronaviruses is the key pathogenic mechanism causing infection. Here, we review the most recent advances in the interactions between viral and host's factors, focusing on the mechanisms by which viral components antagonize interferon (IFN)-mediated innate antiviral immune responses, trying to shed light on new targets and strategies effective for controlling and eliminating porcine enteric coronaviruses.

19.
Phytomedicine ; 107: 154350, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36194974

RESUMEN

BACKGROUND: Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Tong-Xie-Yao-Fang (TXYF), the traditional Chinese herbal medicine prescription, is a classic and effective prescription for the treatment of IBS-D, but its mechanism of action is not fully clarified. OBJECTIVE: To evaluate the efficacy of TXYF in the treatment of IBS-D and to explore its potential mechanism of action. METHODS: Changes in the serum levels of 50 free amino acids were targeted for detection by high-performance liquid chromatography (HPLC), and the expression of glucose-regulated protein 78 (GRP78), general control nonderepressible 2 (GCN2), and endoplasmic reticulum-resident kinase (PERK) was detected by immunohistochemistry examinations in healthy volunteers and IBS-D patients. The IBS-D rat was constructed by the three-factor superposition method of neonatal maternal separation, 2,4,6-trinitrobenzene sulfonic acid enema, and chronic unpredictable stress stimulation. The treatment effect of TXYF on IBS-D rats was observed by recording the body weight, grasp force, fecal water content (FWC), and abdominal withdrawal reflex (AWR) of rats before and after treatment. The effects of GCN2/PERK-eukaryotic initiation factor-2 (eIF2α) -activating transcription Factor 4 (ATF4) pathway proteins and gene expression were analyzed by western blotting, reverse transcription-polymerase chain reaction (RT-qPCR), and immunohistochemistry evaluations. RESULTS: Compared with healthy volunteers, IBS-D patients exhibited lower levels of cysteine, γ-aminoacetic acid (GABA), homoproline, and lysine, and immunohistochemistry showed strong activation of GRP78, a marker of endoplasmic reticulum stress. Differential expression of GCN2 and PERK proteins was detected in IBS-D patients and rat colons. In the IBS-D rats, TXYF improved the body weight and grasp force, reduced the FWC, and improved the AWR score. TXYF increased the levels of p-GCN2 and GCN2 and reduced the levels of GRP78, p-PERK, PERK, p-eIF2α, and eIF2α, thereby affecting the expression of the apoptosis-related transcription factors ATF4, CHOP, Caspase-3, and Bcl-2. CONCLUSION: Our study showed that TXYF improved IBS-D by inhibiting apoptosis. The anti-apoptosis effects were potentially mediated by regulating the GCN2/PERK-eIF2a-ATF4 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome del Colon Irritable , Factor de Transcripción Activador 4/metabolismo , Animales , Peso Corporal , Caspasa 3/metabolismo , Cisteína/farmacología , Cisteína/uso terapéutico , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Factor 2 Eucariótico de Iniciación/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Lisina , Privación Materna , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal , Ácido Trinitrobencenosulfónico/farmacología , Ácido Trinitrobencenosulfónico/uso terapéutico , Agua , eIF-2 Quinasa/metabolismo , Ácido gamma-Aminobutírico
20.
Front Cell Dev Biol ; 10: 1007559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619861

RESUMEN

Organ transplantation is the main treatment for end-stage organ failure, which has rescued tens of thousands of lives. Immune rejection is the main factor affecting the survival of transplanted organs. How to suppress immune rejection is an important goal of transplantation research. A graft first triggers innate immune responses, leading to graft inflammation, tissue injury and cell death, followed by adaptive immune activation. At present, the importance of innate immunity in graft rejection is poorly understood. Autophagy, an evolutionarily conserved intracellular degradation system, is proven to be involved in regulating innate immune response following graft transplants. Moreover, there is evidence indicating that autophagy can regulate graft dysfunction. Although the specific mechanism by which autophagy affects graft rejection remains unclear, autophagy is involved in innate immune signal transduction, inflammatory response, and various forms of cell death after organ transplantation. This review summarizes how autophagy regulates these processes and proposes potential targets for alleviating immune rejection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA