Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794004

RESUMEN

Addressing common challenges such as limited indicators, poor adaptability, and imprecise modeling in gas pre-warning systems for driving faces, this study proposes a hybrid predictive and pre-warning model grounded in time-series analysis. The aim is to tackle the effects of broad application across diverse mines and insufficient data on warning accuracy. Firstly, we introduce an adaptive normalization (AN) model for standardizing gas sequence data, prioritizing recent information to better capture the time-series characteristics of gas readings. Coupled with the Gated Recurrent Unit (GRU) model, AN demonstrates superior forecasting performance compared to other standardization techniques. Next, Ensemble Empirical Mode Decomposition (EEMD) is used for feature extraction, guiding the selection of the Variational Mode Decomposition (VMD) order. Minimal decomposition errors validate the efficacy of this approach. Furthermore, enhancements to the transformer framework are made to manage non-linearities, overcome gradient vanishing, and effectively analyze long time-series sequences. To boost versatility across different mining scenarios, the Optuna framework facilitates multiparameter optimization, with xgbRegressor employed for accurate error assessment. Predictive outputs are benchmarked against Recurrent Neural Networks (RNN), GRU, Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM), where the hybrid model achieves an R-squared value of 0.980975 and a Mean Absolute Error (MAE) of 0.000149, highlighting its top performance. To cope with data scarcity, bootstrapping is applied to estimate the confidence intervals of the hybrid model. Dimensional analysis aids in creating real-time, relative gas emission metrics, while persistent anomaly detection monitors sudden time-series spikes, enabling unsupervised early alerts for gas bursts. This model demonstrates strong predictive prowess and effective pre-warning capabilities, offering technological reinforcement for advancing intelligent coal mine operations.

2.
Anal Chem ; 95(29): 11037-11046, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450688

RESUMEN

Metal-semiconductor composites are promising candidates for surface-enhanced Raman scattering (SERS) substrates, but their inert basal plane, poor active sites, and limited stability hamper their commercial prospects. Herein, we report a three-dimensional CoP nanowire array decorated with Au nanoparticles on carbon cloth (Au@CoP/CC) as a self-supporting flexible SERS substrate. The Au nanoparticles spontaneously grew on the surface of the CoP nanowire array to form efficient SERS hot spots by a redox reaction with HAuCl4 without any additional reducing agents. Such Au@CoP/CC substrate exhibited a limit of detection of 10-11 M using rhodamine 6G as a model dye with outstanding corrosion resistance ability even under extreme acid and alkali conditions, which is better than many recently reported Au-based SERS substrates. Finite-difference time-domain simulation results demonstrated that Au@CoP/CC can provide a high density of regions with intense local electric field enhancement. Moreover, Au@CoP/CC can degrade target organic dyes for the self-cleaning and reproduction of SERS-active substrates under visible light irradiation. This work provides a novel means of using the plasmonic metal-transition metal phosphide composites for high-performance SERS sensing and photodegradation.

3.
Small ; 19(17): e2208036, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36717274

RESUMEN

Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is a potential sustainable route for large-scale ambient ammonia (NH3 ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH3  selectivity. Herein, a rational design of Co nanoparticles anchored on TiO2  nanobelt array on titanium plate (Co@TiO2 /TP) is presented as a high-efficiency electrocatalyst for NO3 - RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO2  develop a built-in electric field, which can accelerate the rate determining step and facilitate NO3 - adsorption, ensuring the selective conversion to NH3 . Expectantly, the Co@TiO2 /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH3  yield of 800.0 µmol h-1  cm-2  under neutral solution. More importantly, Co@TiO2 /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.

4.
Small ; 19(24): e2300291, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919558

RESUMEN

Synthesis of green ammonia (NH3 ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO2 nanoarray supported on Ti plate (TiO2- x /TP) behaves as an efficient catalyst for NO reduction to NH3 . In 0.2 m phosphate-buffered electrolyte, such TiO2- x /TP shows competitive electrocatalytic NH3 synthesis activity with a maximum NH3 yield of 1233.2 µg h-1  cm-2 and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO2- x (101) compared to perfect TiO2 (101). And the low energy barrier of 0.7 eV on TiO2- x (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO2- x /TP and Zn plate to obtain an NH3 yield of 241.7 µg h-1  cm-2 while providing a peak power density of 0.84 mW cm-2 .

5.
Small ; 19(30): e2300620, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058080

RESUMEN

Electroreduction of nitrite (NO2 - ) to valuable ammonia (NH3 ) offers a sustainable and green approach for NH3 synthesis. Here, a Cu3 P@TiO2 heterostructure is rationally constructed as an active catalyst for selective NO2 - -to-NH3 electroreduction, with rich nanosized Cu3 P anchored on a TiO2 nanoribbon array on Ti plate (Cu3 P@TiO2 /TP). When performed in the 0.1 m NaOH with 0.1 m NaNO2 , the Cu3 P@TiO2 /TP electrode obtains a large NH3 yield of 1583.4 µmol h-1  cm-2 and a high Faradaic efficiency of 97.1%. More importantly, Cu3 P@TiO2 /TP also delivers remarkable long-term stability for 50 h electrolysis. Theoretical calculations indicate that intermediate adsorption/conversion processes on Cu3 P@TiO2 interfaces are synergistically optimized, substantially facilitating the conversion of NO2 - -to-NH3 .

6.
Inorg Chem ; 62(1): 25-29, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537850

RESUMEN

Electrochemical nitrate (NO3-) reduction is a potential approach to produce high-value ammonia (NH3) while removing NO3- pollution, but it requires electrocatalysts with high efficiency and selectivity. Herein, we report the development of Fe3O4 nanoparticles decorated TiO2 nanoribbon array on titanium plate (Fe3O4@TiO2/TP) as an efficient electrocatalyst for NO3--to-NH3 conversion. When operated in 0.1 M phosphate-buffered saline and 0.1 M NO3-, such Fe3O4@TiO2/TP achieves a prominent NH3 yield of 12394.3 µg h-1 cm-2 and a high Faradaic efficiency of 88.4%. In addition, it exhibits excellent stability during long-time electrolysis.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitratos , Amoníaco
7.
Inorg Chem ; 62(30): 11746-11750, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449955

RESUMEN

Constructing efficient and low-cost oxygen evolution reaction (OER) catalysts operating in seawater is essential for green hydrogen production but remains a great challenge. In this study, we report an iron doped cobalt carbonate hydroxide nanowire array on nickel foam (Fe-CoCH/NF) as a high-efficiency OER electrocatalyst. In alkaline seawater, such Fe-CoCH/NF demands an overpotential of 387 mV to drive 500 mA cm-2, superior to that of CoCH/NF (597 mV). Moreover, it achieves excellent electrochemical and structural stability in alkaline seawater.

8.
Inorg Chem ; 62(20): 7976-7981, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37144756

RESUMEN

Seawater electrolysis driven by renewable electricity is deemed a promising and sustainable strategy for green hydrogen production, but it is still formidably challenging. Here, we report an iron-doped NiS nanosheet array on Ni foam (Fe-NiS/NF) as a high-performance and stable seawater splitting electrocatalyst. Such Fe-NiS/NF catalyst needs overpotentials of only 420 and 270 mV at 1000 mA cm-2 for the oxygen evolution reaction and hydrogen evolution reaction in alkaline seawater, respectively. Furthermore, its two-electrode electrolyzer needs a cell voltage of 1.88 V for 1000 mA cm-2 with 50 h of long-term electrochemical durability in alkaline seawater. Additionally, in situ electrochemical Raman and infrared spectroscopy were employed to detect the reconstitution process of NiOOH and the generation of oxygen intermediates under reaction conditions.

9.
Nanotechnology ; 35(10)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38055973

RESUMEN

Seawater splitting is a compelling avenue to produce abundant hydrogen, which requires high-performance and cost-effective catalysts. Constructing bimetallic transition metal phosphides is a feasible strategy to meet the challenge. Here, an amorphous Co-Mo-P film supported on nickel foam (Co-Mo-P/NF) electrode is developed with bifunctional properties for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline seawater. Corresponding results indicate that the introduction of Mo can improve the active sites and regulate the intrinsic activity. Such a Co-Mo-P/NF behaves with prominent electrocatalytic activity towards both HER and OER, demanding low overpotentials of 193 and 352 mV at 100 mA cm‒2in alkaline seawater, respectively. Furthermore, the assembled electrolyzer demands a pronounced overall seawater splitting activity with a low cell voltage of 1.76 V to deliver 100 mA cm-2presenting excellent durability without obvious attenuation after 24 h continuous stability test. This work expands the horizon to develop transition metal-phosphorus electrocatalysts with robust and efficient activity for overall seawater splitting.

10.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570688

RESUMEN

Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.

11.
Small ; 18(13): e2106961, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146914

RESUMEN

NiCo2 O4 nanowire array on carbon cloth (NiCo2 O4 /CC) is proposed as a highly active electrocatalyst for ambient nitrate (NO3 - ) reduction to ammonia (NH3 ). In 0.1 m NaOH solution with 0.1 m NaNO3 , such NiCo2 O4 /CC achieves a high Faradic efficiency of 99.0% and a large NH3 yield up to 973.2 µmol h-1  cm-2 . The superior catalytic activity of NiCo2 O4 comes from its half-metal feature and optimized adsorption energy due to the existence of Ni in the crystal structure. A Zn-NO3 - battery with NiCo2 O4 /CC cathode also shows a record-high battery performance.

12.
Inorg Chem ; 61(20): 8096-8102, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35535516

RESUMEN

Electrochemical reduction of NO to NH3 is of great significance for mitigating the accumulation of nitrogen oxides and producing valuable NH3. Here, we demonstrate that the CoS nanosheet with sulfur vacancies (CoS1-x) behaves as an efficient catalyst toward electrochemical NO-to-NH3 conversion. In 0.2 M Na2SO4 electrolyte, such CoS1-x displays a large NH3 yield rate (44.67 µmol cm-2 h-1) and a high Faradaic efficiency (53.62%) at -0.4 V versus the reversible hydrogen electrode, outperforming the CoS counterpart (27.02 µmol cm-2 h-1; 36.68%). Moreover, the Zn-NO battery with CoS1-x shows excellent performance with a power density of 2.06 mW cm-2 and a large NH3 yield rate of 1492.41 µg h-1 mgcat.-1. Density functional theory was performed to obtain mechanistic insights into the NO reduction over CoS1-x.

13.
Molecules ; 27(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36364442

RESUMEN

The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.

14.
Inorg Chem ; 60(10): 7584-7589, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33929201

RESUMEN

Electrocatalytic N2 reduction is deemed as a prospective strategy toward low-carbon and environmentally friendly NH3 production under mild conditions, but its further application is still plagued by low NH3 yield and poor faradaic efficiency (FE). Thus, electrocatalysts endowing with high activity and satisfying selectivity are highly needed. Herein, Bi nanoparticles in situ confined in carbon rods (Bi NPs@CRs) are reported, which are fabricated via thermal annealing of a Bi-MOF precursor as a high-efficiency electrocatalyst for artificial NH3 synthesis with favorable selectivity. Such an electrocatalyst conducted in 0.1 M HCl achieves a high FE of 11.50% and a large NH3 yield of 20.80 µg h-1 mg-1cat. at -0.55 and -0.60 V versus reversible hydrogen electrode, respectively, which also possesses high electrochemical durability.

15.
Angew Chem Int Ed Engl ; 60(48): 25263-25268, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34519397

RESUMEN

Electrochemical reduction of NO not only offers an attractive alternative to the Haber-Bosch process for ambient NH3 production but mitigates the human-caused unbalance of nitrogen cycle. Herein, we report that MoS2 nanosheet on graphite felt (MoS2 /GF) acts as an efficient and robust 3D electrocatalyst for NO-to-NH3 conversion. In acidic electrolyte, such MoS2 /GF attains a maximal Faradaic efficiency of 76.6 % and a large NH3 yield of up to 99.6 µmol cm-2 h-1 . Using MoS2 nanosheet-loaded carbon paper as the cathode, a proof-of-concept device of Zn-NO battery was assembled to deliver a discharge power density of 1.04 mW cm-2 and an NH3 yield of 411.8 µg h-1 mgcat. -1 . Calculations reveal that the positively charged Mo-edge sites facilitate NO adsorption/activation via an acceptance-donation mechanism and disfavor the binding of protons and the coupling of N-N bond.

16.
Anal Chem ; 92(24): 15927-15935, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33275415

RESUMEN

Electrochemical in situ sensing of small signal molecules released from living cells has an increasing significance in early diagnosis, pathological analyses, and drug discovery. Here, a living cell-fixed sensing platform was built using the BC@DNA-Mn3(PO4)2 nanozyme, in which a highly biocompatible bacterial cellulose riveted with very tiny Mn3(PO4)2; it not only delivers high catalytic activity toward superoxide anions but possesses excellent biocompatibility for cell adsorption and growth. Additionally, the experimental results suggested that fixing the living cells on the surface of the sensing platform facilitates tiny Mn3(PO4)2 activity centers to capture and detect O2•- very quickly and simultaneously has great potential in miniaturization, cost reduction, and real-time monitoring.


Asunto(s)
Materiales Biocompatibles/química , Celulosa/química , ADN/química , Nanoestructuras/química , Compuestos Organometálicos/química , Superóxidos/análisis , Materiales Biocompatibles/síntesis química , Técnicas Biosensibles , Electrodos , Humanos , Tamaño de la Partícula , Superóxidos/metabolismo , Propiedades de Superficie , Factores de Tiempo , Células Tumorales Cultivadas
17.
Mikrochim Acta ; 186(12): 789, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31732798

RESUMEN

A corn-like CeO2/C coaxial cable textured by a cerium oxide shell and a carbon core was designed to sense NO. The carbon core possesses high electrical conductivity, and the CeO2 surface delivers excellent electrocatalytic activity. The sensor, typically operated at 0.8 V (vs. Ag/AgCl), exhibits a detection limit of 1.7 nM, which is 4-times lower than that of CeO2 nanotubes based one (at S/N = 3). It also displays wide linear response (up to 83 µM), a sensitivity of 0.81 µA µM-1 cm-2, and fast response (2 s). These values are highly competitive to that of a CeO2 tube (0.92 µA µM-1 cm-2 and 2 s). The sensor was used to quantify NO that is released by Aspergillus flavus. Graphical abstractSchematic representation of corn-like CeO2/C which can more sensitively and effectively detect NO released from A. flavus than when using CeO2 nanotubes, benefitting from its unique coaxial cable structure.

18.
J Colloid Interface Sci ; 634: 86-92, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535172

RESUMEN

Nitrite (NO2-), as a N-containing pollutant, widely exists in aqueous solution, causing a series of environmental and health problems. Electrocatalytic NO2- reduction is a promising and sustainable strategy to remove NO2-, meanwhile, producing high value-added ammonia (NH3). But the NO2- reduction reaction (NO2-RR) involves complex 6-electron transfer process that requires high-efficiency electrocatalysts to accomplish NO2--to-NH3 conversion. Herein, we report NiS2 nanoparticles decorated TiO2 nanoribbon array on titanium mesh (NiS2@TiO2/TM) as a fantastic NO2-RR electrocatalyst for ambient NH3 synthesis. When tested in NO2--containing solution, NiS2@TiO2/TM achieves a satisfactory NH3 yield of 591.9 µmol h-1 cm-2 and a high Faradaic efficiency of 92.1 %. Besides, it shows remarkable stability during 12-h electrolysis test.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Nitritos , Amoníaco , Dióxido de Nitrógeno
19.
J Colloid Interface Sci ; 630(Pt A): 714-720, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36274406

RESUMEN

Electrochemical nitrate (NO3-) reduction reaction (NO3RR) possesses two-pronged properties for sustainable ammonia (NH3) synthesis and mitigating NO3- contamination in water. However, the sluggish kinetics for the direct eight-electron NO3--to-NH3 conversion makes a formidable challenge to develop efficient electrocatalysts. Herein, we report a heterostructure of Co3O4 nanosheets decorated TiO2 nanobelt array on titanium plate (Co3O4@TiO2/TP) as an efficient NO3RR electrocatalyst. Both experimental and density theory calculations reveal that the heterostructure of Co3O4@TiO2 establishes a built-in electric field which can optimize the electron migration kinetics, as well as facilitate the adsorption and fixation of NO3- on the electrode surface, ensuring the selectivity to NH3. As expected, the designed Co3O4@TiO2/TP exhibits a remarkable Faradaic efficiency of 93.1 % and a remarkable NH3 yield as high as 875 µmol h-1 cm-2, superior to Co3O4/TP and TiO2/TP. Significantly, it also demonstrates strong electrochemical durability.

20.
Chemosphere ; 311(Pt 1): 137020, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36330974

RESUMEN

The cobalt nanoparticles decorated biomass Juncus derived carbon (Co@JDC) was prepared by facile calcination strategy and applied to activate peroxymonosulfate (PMS) for eliminating ofloxacin (OFX) in the water environment. The results of catalytic experiments show that 97% of OFX degradation efficiency and 70.4% of chemical oxygen demand removal rate are obtained within 24 min at 0.1 g L-1 Co@JDC, 0.2 g L-1 PMS, 20 mg L-1 OFX (100 mL), and pH = 7, which indicates that Co@JDC/PMS system exhibits excellent performance. Meanwhile, the experimental results of affect factor show that Co@JDC/PMS system can operate in a wider pH range (3-9) and Cl-1, NO3-1, and SO42- have an ignorable effect on OFX degradation. The radical identification experiments confirm that SO4˙-, ·OH, O2˙-, and 1O2 are involved in the process of PMS activation, especially SO4˙- and 1O2 are the main contributors. Furthermore, a possible PMS activation mechanism by Co@JDC was proposed and the degradation pathways of OFX were deduced. Finally, the stable catalytic activity, negligible leaching of Co2+, and the outstanding degradation efficiency for other antibiotics prove that Co@JDC possesses good stability and universality.


Asunto(s)
Cobalto , Nanopartículas , Carbono , Ofloxacino , Biomasa , Peróxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA