Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.189
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669474

RESUMEN

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Ratones , Animales , Humanos , Tejido Adiposo Pardo/metabolismo , Hipotálamo/metabolismo , Termogénesis/fisiología , Retina , Células Ganglionares de la Retina , Glucosa/metabolismo
2.
Cell ; 185(17): 3124-3137.e15, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944541

RESUMEN

During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.


Asunto(s)
Oxitocina , Células Ganglionares de la Retina , Animales , Encéfalo/metabolismo , Humanos , Ratones , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo
3.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392957

RESUMEN

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Interleucina-10/metabolismo , Células Madre/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Citocinas/farmacología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase II/metabolismo , Sistema Inmunológico/metabolismo , Intestinos/citología , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Salmonella enterica/patogenicidad , Células Madre/metabolismo , Linfocitos T Colaboradores-Inductores/citología
4.
Plant Cell ; 36(7): 2652-2667, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38573521

RESUMEN

Temperature shapes the geographical distribution and behavior of plants. Understanding the regulatory mechanisms underlying the plant heat stress response is important for developing climate-resilient crops, including maize (Zea mays). To identify transcription factors (TFs) that may contribute to the maize heat stress response, we generated a dataset of short- and long-term transcriptome changes following a heat treatment time course in the inbred line B73. Co-expression network analysis highlighted several TFs, including the class B2a heat shock factor (HSF) ZmHSF20. Zmhsf20 mutant seedlings exhibited enhanced tolerance to heat stress. Furthermore, DNA affinity purification sequencing and Cleavage Under Targets and Tagmentation assays demonstrated that ZmHSF20 binds to the promoters of Cellulose synthase A2 (ZmCesA2) and three class A Hsf genes, including ZmHsf4, repressing their transcription. We showed that ZmCesA2 and ZmHSF4 promote the heat stress response, with ZmHSF4 directly activating ZmCesA2 transcription. In agreement with the transcriptome analysis, ZmHSF20 inhibited cellulose accumulation and repressed the expression of cell wall-related genes. Importantly, the Zmhsf20 Zmhsf4 double mutant exhibited decreased thermotolerance, placing ZmHsf4 downstream of ZmHsf20. We proposed an expanded model of the heat stress response in maize, whereby ZmHSF20 lowers seedling heat tolerance by repressing ZmHsf4 and ZmCesA2, thus balancing seedling growth and defense.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Termotolerancia/genética , Celulosa/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
Blood ; 143(1): 21-31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647633

RESUMEN

ABSTRACT: Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies. A double-blind, placebo-controlled, dose-escalation phase to identify a recommended dose was followed by an open-label expansion phase with matched controls to further evaluate the efficacy and safety of CD24Fc in preventing acute GVHD. A multidose regimen of CD24Fc produced sustained drug exposure with similar safety outcomes when compared with single-dose regimens. Grade 3 to 4 acute GVHD-free survival at day 180 was 96.2% (95% confidence interval [CI], 75.7-99.4) in the CD24Fc expansion cohort (CD24Fc multidose), compared with 73.6% (95% CI, 63.2-81.4) in matched controls (hazard ratio, 0.1 [95% CI, 0.0-0.6]; log-rank test, P = .03). No participants in the CD24Fc escalation or expansion phases experienced dose-limiting toxicities (DLTs). The multidose regimen of CD24Fc was well tolerated with no DLTs and was associated with high rates of severe acute GVHD-free survival after myeloablative MUD HSCT. This trial was registered at ClinicalTrials.gov as #NCT02663622.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Metotrexato/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Homólogo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Acondicionamiento Pretrasplante/efectos adversos
6.
Blood ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028876

RESUMEN

Abatacept plus calcineurin inhibitors/methotrexate (CNI/MTX) is the first FDA-approved regimen for acute graft-versus-host disease (aGVHD) prophylaxis during unrelated-donor hematopoietic cell transplantation (URD-HCT). We investigated its impact in URD-HCT patients using Center for International Blood and Marrow Transplant Research data for 7/8-human leukocyte antigen (HLA)-mismatched (MMUD) or 8/8-HLA-matched (MUD) URD-HCT recipients between 2011-2018. Primary outcomes included day-180, 1-year, and 2-year overall survival (OS) and relapse-free survival (RFS) for abatacept+CNI/MTX vs CNI/MTX, CNI/MTX+antithymocyte globulin (ATG), and post-transplant cyclophosphamide-based prophylaxis (PT-Cy); other outcomes included aGVHD, chronic GVHD, non-relapse mortality, and relapse. For 7/8-MMUDs, day-180 OS (primary endpoint supporting FDA approval) was significantly higher for abatacept+CNI/MTX vs CNI/MTX (98%vs75%; p=0.0028). Two-year OS was significantly higher for abatacept+CNI/MTX vs CNI/MTX (83%vs55%; p=0.0036), CNI/MTX+ATG (83%vs46%; p=0.0005) and similar to PT-Cy (80%vs68%; p=0.2325). Two-year RFS was significantly higher for abatacept+CNI/MTX vs CNI/MTX (74%vs49%; p=0.0098) and CNI/MTX+ATG (77%vs35%; p=0.0002), and similar vs PT-Cy (72%vs56%; p=0.1058). For 8/8-MUDs, 2-year OS was similar with abatacept+CNI/MTX vs CNI/MTX (70%vs62%; p=0.2569), CNI/MTX+ATG (75%vs64%; p=0.1048), and PT-Cy (74%vs69%; p=0.5543). Two-year RFS for abatacept+CNI/MTX was numerically higher vs CNI/MTX (63%vs52%; p=0.1497) with an improved hazard ratio (HR: 0.46 [0.25-0.86]), and vs CNI/MTX+ATG (66%vs55%; p=0.1193; HR: 0.39 [0.21-0.73]). Two-year RFS was similar vs PT-Cy (68%vs57%; p=0.2356; HR: 0.54 [0.26-1.11]). For both 7/8-MMUD and 8/8-MUD recipients, abatacept+CNI/MTX prophylaxis improved survival outcomes vs CNI/MTX and CNI/MTX+ATG; outcomes were similar to PT-Cy-based regimens. Abatacept+CNI/MTX has potential to facilitate unrelated donor pool expansion for HCT.

7.
Circ Res ; 134(7): e34-e51, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375634

RESUMEN

BACKGROUND: Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS: High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPß phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS: Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal
8.
Artículo en Inglés | MEDLINE | ID: mdl-39069827

RESUMEN

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on Slc25a1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of Slc25a1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for four weeks, while Nile tilapia received intraperitoneal injections of dsRNA to knockdown slc25a1b for seven days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Notably, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride accumulation by deacetylating Cpt1a. Additionally, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of non-histone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.

9.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660921

RESUMEN

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

10.
Circulation ; 147(18): 1369-1381, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36870065

RESUMEN

BACKGROUND: Computed tomography-derived fractional flow reserve (CT-FFR) using on-site machine learning enables identification of both the presence of coronary artery disease and vessel-specific ischemia. However, it is unclear whether on-site CT-FFR improves clinical or economic outcomes when compared with the standard of care in patients with stable coronary artery disease. METHODS: In total, 1216 patients with stable coronary artery disease and an intermediate stenosis of 30% to 90% on coronary computed tomographic angiography were randomized to an on-site CT-FFR care pathway using machine learning or to standard care in 6 Chinese medical centers. The primary end point was the proportion of patients undergoing invasive coronary angiography without obstructive coronary artery disease or with obstructive disease who did not undergo intervention within 90 days. Secondary end points included major adverse cardiovascular events, quality of life, symptoms of angina, and medical expenditure at 1 year. RESULTS: Baseline characteristics were similar in both groups, with 72.4% (881/1216) having either typical or atypical anginal symptoms. A total of 421 of 608 patients (69.2%) in the CT-FFR care group and 483 of 608 patients (79.4%) in the standard care group underwent invasive coronary angiography. Compared with standard care, the proportion of patients undergoing invasive coronary angiography without obstructive coronary artery disease or with obstructive disease not undergoing intervention was significantly reduced in the CT-FFR care group (28.3% [119/421] versus 46.2% [223/483]; P<0.001). Overall, more patients underwent revascularization in the CT-FFR care group than in the standard care group (49.7% [302/608] versus 42.8% [260/608]; P=0.02), but major adverse cardiovascular events at 1 year did not differ (hazard ratio, 0.88 [95% CI, 0.59-1.30]). Quality of life and symptoms improved similarly during follow-up in both groups, and there was a trend towards lower costs in the CT-FFR care group (difference, -¥4233 [95% CI, -¥8165 to ¥973]; P=0.07). CONCLUSIONS: On-site CT-FFR using machine learning reduced the proportion of patients with stable coronary artery disease undergoing invasive coronary angiography without obstructive disease or requiring intervention within 90 days, but increased revascularization overall without improving symptoms or quality of life, or reducing major adverse cardiovascular events. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03901326.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Calidad de Vida , Angiografía Coronaria/métodos , Tomografía Computarizada por Rayos X , Angiografía por Tomografía Computarizada/métodos , Angina de Pecho , Valor Predictivo de las Pruebas
11.
Growth Factors ; 42(2): 62-73, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38954805

RESUMEN

BACKGROUND AND OBJECTIVE: Dysregulated expression of Forkhead Box N2 (FOXN2) has been detected in various cancer types. However, the underlying mechanisms by which FOXN2 contributes to the onset and progression of gastric cancer (GC) remain largely unexplored. This study aimed to elucidate the potential role of FOXN2 within GC, its downstream molecular mechanisms, and its feasibility as a novel serum biomarker for GC. METHODS: Tissue samples from GC patients and corresponding non-cancerous tissues were collected. Peripheral blood samples were obtained from GC patients and healthy controls. The expression of FOXN2 was determined using quantitative real-time PCR, western blotting, and immunohistochemistry. The expression of FOXN2 in GC cells was modulated by transfection with small interfering RNA (siRNA) or the pcDNA 3.1 expression vector. Cell proliferation was assessed using the Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine incorporation assays. The migratory and invasive capacities of cells were evaluated by Transwell assays, apoptosis rates were measured by flow cytometry, and the expression of proliferative, apoptotic, and epithelial-mesenchymal transition (EMT) markers were assessed by western blot analysis. RESULTS: FOXN2 was found to be overexpressed in the serum, tissues, and cells of GC, correlating with distant metastasis and TNM staging. FOXN2 demonstrated diagnostic value in differentiating GC patients from healthy individuals, with higher levels of FOXN2 being indicative of poorer survival rates. Silencing FOXN2 in vitro inhibited the proliferation, invasion, migration, and EMT of GC cells, while promoting apoptosis. FOXN2 was shown to regulate the transforming growth factor-beta (TGFß) receptor signaling pathway in GC cells via its interaction with Partitioning Defective 6 Homolog Alpha (PARD6A). CONCLUSION: In summary, our data suggest that FOXN2 acts as an oncogenic factor in GC, modulating the TGFß pathway by binding to PARD6A, thereby influencing gastric carcinogenesis. This study underscores the functional significance of FOXN2 as a potential serum biomarker and therapeutic target in GC.


Asunto(s)
Biomarcadores de Tumor , Transición Epitelial-Mesenquimal , Factores de Transcripción Forkhead , Transducción de Señal , Neoplasias Gástricas , Factor de Crecimiento Transformador beta , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apoptosis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/sangre , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/sangre
12.
Biochem Biophys Res Commun ; 704: 149702, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38422898

RESUMEN

BACKGROUND: As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS: Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1ß, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS: Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS: NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Experimental , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Ratones Noqueados para ApoE , Inflamación/metabolismo , Aterosclerosis/complicaciones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Glucosa
13.
Small ; : e2401701, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705844

RESUMEN

Enhancing the intrinsic stability of perovskite and through encapsulation to isolate water, oxygen, and UV-induced decomposition are currently common and most effective strategies in perovskite solar cells. Here, the atomic layer deposition process is employed to deposit a nanoscale (≈100 nm), uniform, and dense Al2O3 film on the front side of perovskite devices, effectively isolating them from the erosion caused by water and oxygen in the humid air. Simultaneously, nanoscale (≈100 nm) TiO2 films are also deposited on the glass surface to efficiently filter out the ultraviolet (UV) light in the light source, which induces degradation in perovskite. Ultimately, throughthe collaborative effects of both aspects, the stability of the devices is significantly improved under conditions of humid air and illumination. As a result, after storing the devices in ambient air for 1000 h, the efficiency only declines to 95%, and even after 662 h of UV exposure, the efficiency remains at 88%, far surpassing the performance of comparison devices. These results strongly indicate that the adopted Al2O3 and TiO2 thin films play a significant role in enhancing the stability of perovskite solar cells, demonstrating substantial potential for widespread industrial applications.

14.
J Transl Med ; 22(1): 472, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762511

RESUMEN

BACKGROUND: Vessels encapsulating tumor clusters (VETC) is a newly described vascular pattern that is distinct from microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Despite its importance, the current pathological diagnosis report does not include information on VETC and hepatic plates (HP). We aimed to evaluate the prognostic value of integrating VETC and HP (VETC-HP model) in the assessment of HCC. METHODS: A total of 1255 HCC patients who underwent radical surgery were classified into training (879 patients) and validation (376 patients) cohorts. Additionally, 37 patients treated with lenvatinib were studied, included 31 patients in high-risk group and 6 patients in low-risk group. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to establish a prognostic model for the training set. Harrell's concordance index (C-index), time-dependent receiver operating characteristics curve (tdROC), and decision curve analysis were utilized to evaluate our model's performance by comparing it to traditional tumor node metastasis (TNM) staging for individualized prognosis. RESULTS: A prognostic model, VETC-HP model, based on risk scores for overall survival (OS) was established. The VETC-HP model demonstrated robust performance, with area under the curve (AUC) values of 0.832 and 0.780 for predicting 3- and 5-year OS in the training cohort, and 0.805 and 0.750 in the validation cohort, respectively. The model showed superior prediction accuracy and discrimination power compared to TNM staging, with C-index values of 0.753 and 0.672 for OS and disease-free survival (DFS) in the training cohort, and 0.728 and 0.615 in the validation cohort, respectively, compared to 0.626 and 0.573 for TNM staging in the training cohort, and 0.629 and 0.511 in the validation cohort. Thus, VETC-HP model had higher C-index than TNM stage system(p < 0.01).Furthermore, in the high-risk group, lenvatinib alone appeared to offer less clinical benefit but better disease-free survival time. CONCLUSIONS: The VETC-HP model enhances DFS and OS prediction in HCC compared to traditional TNM staging systems. This model enables personalized temporal survival estimation, potentially improving clinical decision-making in surveillance management and treatment strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Curva ROC , Anciano , Análisis de Supervivencia , Estimación de Kaplan-Meier , Reproducibilidad de los Resultados , Quinolinas/uso terapéutico , Compuestos de Fenilurea
15.
Plant Physiol ; 193(4): 2622-2639, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37587696

RESUMEN

Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-ß) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-ß WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.


Asunto(s)
Portulaca , Portulaca/genética , Portulaca/metabolismo , Duplicación de Gen , Metabolismo Ácido de las Crasuláceas , Evolución Biológica , Filogenia , Fotosíntesis/genética
16.
Cardiovasc Diabetol ; 23(1): 54, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331798

RESUMEN

BACKGROUND: The atherogenic index of plasma (AIP) and cardiovascular disease (CVD) in participants with abnormal glucose metabolism have been linked in previous studies. However, it was unclear whether AIP control level affects the further CVD incidence among with diabetes and pre-diabetes. Therefore, our study aimed to investigate the association between AIP control level with risk of CVD in individuals with abnormal glucose metabolism. METHODS: Participants with abnormal glucose metabolism were included from the China Health and Retirement Longitudinal Study. CVD was defined as self-reporting heart disease and/or stroke. Using k-means clustering analysis, AIP control level, which was the log-transformed ratio of triglyceride to high-density lipoprotein cholesterol in molar concentration, was divided into five classes. The association between AIP control level and incident CVD among individuals with abnormal glucose metabolism was investigated multivariable logistic regression analysis and application of restricted cubic spline analysis. RESULTS: 398 (14.97%) of 2,659 participants eventually progressed to CVD within 3 years. After adjusting for various confounding factors, comparing to class 1 with the best control of the AIP, the OR for class 2 with good control was 1.31 (95% CI, 0.90-1.90), the OR for class 3 with moderate control was 1.38 (95% CI, 0.99-1.93), the OR for class 4 with worse control was 1.46 (95% CI, 1.01-2.10), and the OR for class 5 with consistently high levels was 1.56 (95% CI, 1.03-2.37). In restricted cubic spline regression, the relationship between cumulative AIP index and CVD is linear. Further subgroup analysis demonstrated that the similar results were observed in the individuals with agricultural Hukou, history of smoking, diastolic blood pressure ≥ 80mmHg, and normal body mass index. In addition, there was no interaction between the AIP control level and the subgroup variables. CONCLUSIONS: In middle-aged and elderly participants with abnormal glucose metabolism, constant higher AIP with worst control may have a higher incidence of CVD. Monitoring long-term AIP change will contribute to early identification of high risk of CVD among individuals with abnormal glucose metabolism.


Asunto(s)
Enfermedades Cardiovasculares , Persona de Mediana Edad , Anciano , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Glucosa , Factores de Riesgo , Estudios Longitudinales , Triglicéridos , China/epidemiología
17.
Crit Rev Biotechnol ; : 1-15, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161061

RESUMEN

The ornithine-urea cycle (OUC) in fungal cells has biotechnological importance and many physiological functions and is closely related to the acetyl glutamate cycle (AGC). Fumarate can be released from argininosuccinate under the catalysis of argininosuccinate lyase in OUC which is regulated by the Ca2+ signaling pathway and over 93.9 ± 0.8 g/L fumarate can be yielded by the engineered strain of Aureobasidium pullulans var. aubasidani in the presence of CaCO3. Furthermore, 2.1 ± 0.02 mg of L-ornithine (L-Orn)/mg of the protein also can be synthesized via OUC by the engineered strains of Aureobasidum melanogenum. Fumarate can be transformed into many drugs and amino acids and L-Orn can be converted into siderophores (1.7 g/L), putrescine (33.4 g/L) and L-piperazic acid (L-Piz) (3.0 g/L), by different recombinant strains of A. melanogenum. All the fumarate, L-Orn, siderophore, putrescine and L-Piz have many applications. As the yeast-like fungi and the promising chassis, Aureobasidium spp, have many advantages over any other fungal strains. Further genetic manipulation and bioengineering will enhance the biosynthesis of fumarate and L-Orn and their derivates.


OUC in fungal cells has biotechnological importance and many physiological functions; OUC is closely related to acetyl glutamate cycle (AGC). Fumarate, L-Orn, siderophore, putrescine and L-Piz produced from OUC have many applications.

18.
BMC Cancer ; 24(1): 649, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802821

RESUMEN

BACKGROUND: Neoadjuvant immune checkpoint blockade (ICB) combined with chemoradiotherapy offers high pathologic complete response (pCR) rate for patients with locally advanced esophageal squamous cell carcinomas (ESCC). But the dynamic tumor immune microenvironment modulated by such neoadjuvant therapy remains unclear. PATIENTS AND METHODS: A total of 41 patients with locally advanced ESCC were recruited. All patients received neoadjuvant toripalimab combined with concurrent chemoradiotherapy. Matched pre- and post-treatment tissues were obtained for fluorescent multiplex immunohistochemistry (mIHC) and IHC analyses. The densities and spatial distributions of immune cells were determined by HALO modules. The differences of immune cell patterns before and after neoadjuvant treatment were investigated. RESULTS: In the pre-treatment tissues, more stromal CD3 + FoxP3 + Tregs and CD86+/CD163 + macrophages were observed in patients with residual tumor existed in the resected lymph nodes (pN1), compared with patients with pCR. The majority of macrophages were distributed in close proximity to tumor nest in pN1 patients. In the post-treatment tissues, pCR patients had less CD86 + cell infiltration, whereas higher CD86 + cell density was significantly associated with higher tumor regression grades (TRG) in non-pCR patients. When comparing the paired pre- and post-treatment samples, heterogeneous therapy-associated immune cell patterns were found. Upon to the treatment, CD3 + T lymphocytes were slightly increased in pCR patients, but markedly decreased in non-pCR patients. In contrast, a noticeable increase and a less obvious decrease of CD86 + cell infiltration were respectively depicted in non-pCR and pCR patients. Furthermore, opposite trends of the treatment-induced alterations of CD8 + and CD15 + cell infiltrations were observed between pN0 and pN1 patients. CONCLUSIONS: Collectively, our data demonstrate a comprehensive picture of tumor immune landscape before and after neoadjuvant ICB combined with chemoradiotherapy in ESCC. The infiltration of CD86 + macrophage may serve as an unfavorable indicator for neoadjuvant toripalimab combined with chemoradiotherapy.


Asunto(s)
Quimioradioterapia , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Inhibidores de Puntos de Control Inmunológico , Terapia Neoadyuvante , Microambiente Tumoral , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Terapia Neoadyuvante/métodos , Masculino , Femenino , Quimioradioterapia/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral/inmunología , Anciano , Adulto , Macrófagos/inmunología , Macrófagos/metabolismo
19.
FASEB J ; 37(8): e23048, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37389895

RESUMEN

Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Animales , Ratones , Músculo Liso Vascular , Sistema Enzimático del Citocromo P-450 , Factores de Transcripción , Aterosclerosis/genética , Apolipoproteínas E/genética , Citocromo P-450 CYP4A , Transportador 1 de Casete de Unión a ATP/genética
20.
Anticancer Drugs ; 35(2): 129-139, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615540

RESUMEN

Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.


Asunto(s)
Auranofina , Neoplasias Colorrectales , Humanos , Animales , Ratones , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/patología , Autofagia , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA