Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(2): 891-899, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36057934

RESUMEN

BACKGROUND: Iron-deficiency anemia is one severe micronutrient malnutrition and has captured worldwide attention. This study evaluated the in vitro iron absorption of two iron-binding proteins (hemoglobin and ferritin) from Tegillarca granosa. In addition, the protein structure-iron absorption relationship and the regulatory effect of hepcidin on cellular iron absorption were explored. RESULTS: Our findings revealed that both hemoglobin and ferritin extracted from T. granosa contained abundant iron-binding sites, as evidenced by stronger peaks in amide I and II regions compared with the two proteins from humans. Less ß-sheet (27.67%) structures were found in hemoglobin compared with ferritin (36.40%), probably contributing to its greater digestibility and more release of available iron. This was confirmed by the results of Caco-2/HepG2 cell culture system that showed iron absorption of hemoglobin was 26.10-39.31% higher than that of ferritin with an iron content of 50-150 µmol L-1 . This high iron absorption of hemoglobin (117.86-174.10 ng mg-1 ) could also be due to more hepcidin produced by HepG2 cells, thereby preventing ferroportin-mediated iron efflux from Caco-2 cells. In addition, the possible risk of oxidative stress was evaluated in cells post-iron exposure. In comparison with ferrous sulfate, a common iron supplement, Caco-2 cells treated with the iron-binding proteins had a 9.50-25.73% lower level of intracellular reactive oxygen species, indicating the safety of hemoglobin and ferritin. CONCLUSION: Collectively, the data of this research would be helpful for understanding the key features and potential of developing hemoglobin and ferritin from T. granosa as novel iron supplements. © 2022 Society of Chemical Industry.


Asunto(s)
Hepcidinas , Hierro , Humanos , Células CACO-2 , Técnicas de Cocultivo , Digestión , Ferritinas/metabolismo , Hemoglobinas , Hepcidinas/metabolismo , Hierro/metabolismo , Arcidae , Animales , Células Hep G2
2.
Food Funct ; 15(3): 1144-1157, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38235788

RESUMEN

Iron deficiency anemia (IDA) caused by micronutrient iron deficiency has attracted global attention due to its adverse health effects. The regulation of iron uptake and metabolism is finely controlled by various transporters and hormones in the body. Dietary iron intake and regulation are essential in maintaining human health and iron requirements. The review aims to investigate literature concerning dietary iron intake and systemic regulation. Besides, recent IDA treatment and dietary iron supplementation are discussed. Considering the importance of the gut microbiome, the interaction between bacteria and micronutrient iron in the gut is also a focus of this review. The iron absorption efficiency varies considerably according to iron type and dietary factors. Iron fortification remains the cost-effective strategy, although challenges exist in developing suitable iron fortificants and food vehicles regarding bioavailability and acceptability. Iron deficiency may alter the microbiome structure and promote the growth of pathogenic bacteria in the gut, affecting immune balance and human health.


Asunto(s)
Anemia Ferropénica , Microbioma Gastrointestinal , Deficiencias de Hierro , Oligoelementos , Humanos , Anemia Ferropénica/tratamiento farmacológico , Hierro de la Dieta , Alimentos Fortificados , Hierro , Micronutrientes , Suplementos Dietéticos
3.
Food Funct ; 14(15): 7040-7052, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37449470

RESUMEN

Iron deficiency anemia (IDA) is a serious threat to the health of humans around the world. Tegillarca granosa (T. granosa) is considered as an excellent source of iron due to its abundant iron-binding protein hemoglobin. This study aimed to investigate the effects of hemoglobin from T. granosa on the gut microbiota and iron bioavailability in IDA mice. Compared to normal mice, IDA mice showed reduced microbiota diversity and altered relative abundance (reduced Muribaculaceae and increased Bacteroides). After 4 weeks of administration, hemoglobin restored the dysbiosis of the intestinal microbiota induced by IDA and decreased the Firmicutes/Bacteroidota ratio and the abundance of Proteobacteria. Analysis of the hemoglobin regeneration efficiency of mice treated with hemoglobin confirmed that hemoglobin exhibited high iron bioavailability, particularly at low-dose administration, suggesting that a small amount of hemoglobin from T. granosa markedly elevated the blood hemoglobin level in mice. These findings suggested that IDA could be alleviated by administration of hemoglobin with excellent iron bioavailability, and its therapeutic mechanism may be partially attributed to the regulation of the intestinal microbiota composition and relative abundance. These results indicated that T. granosa hemoglobin may be a promising iron supplement to treat IDA and promote the utilization of aquatic-derived proteins.


Asunto(s)
Anemia Ferropénica , Arcidae , Microbioma Gastrointestinal , Microbiota , Humanos , Ratones , Animales , Anemia Ferropénica/tratamiento farmacológico , Hierro/metabolismo , Hemoglobinas/metabolismo , Bacteroidetes/metabolismo
4.
Food Res Int ; 162(Pt A): 112031, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461251

RESUMEN

Iron deficiency anemia (IDA) is the most common nutritional deficiency in the world. This study was aimed to evaluate the therapeutic effects of hemoglobin from Tegillarca granosa (T. granosa) on IDA in mice. Mice were randomly divided into five groups: a normal control group, an anemia model group, a positive (FeSO4) control group, a low-dose and high-dose hemoglobin groups. After 4-week iron supplements administration, it was observed that hemoglobin at 2.0 mg iron/kg body weight had better restorative effective on IDA mice than that of FeSO4 with regard to routine blood parameters and serum biochemical indicators. Meanwhile, the IDA-caused alterations of organ coefficients and liver morphology were ameliorated in mice after hemoglobin supplementation in a dose-dependent manner. Further correlation analysis of indicators showed that serum ferritin (iron storage protein) and soluble transferrin receptor (cellular iron uptake membrane glycoprotein) were susceptible to iron deficiency, indicating possibledisorder of iron metabolism caused by IDA. And levels of serum ferritin and soluble transferrin receptor were restored after administration of hemoglobin. These findings confirmed the safety and effectiveness of T. granosa derived hemoglobin in alleviating IDA in mice, suggesting its great potential as an alternative for iron supplementation.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Animales , Ratones , Anemia Ferropénica/tratamiento farmacológico , Ferritinas , Hemoglobinas , Hierro , Receptores de Transferrina
5.
Int J Biol Macromol ; 219: 11-20, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35931292

RESUMEN

Iron deficiency anemia (IDA) is a common micronutrient deficiency. Tegillarca granosa (T. granosa) is a good source of iron due to its high content of hemoglobin. The present study aimed to determine the effects of glycosylation on structure, physicochemical characteristics and iron bioavailability of hemoglobin. Using Box-Behnken design and response surface methodology, the optimal conditions for hemoglobin-chitosan glycosylation were obtained: 61.8 °C, pH 6.3, hemoglobin/chitosan mass ratio of 4.3 and reaction time of 15 min. The formation of hemoglobin-chitosan conjugates was verified by SDS-PAGE and fluorescence spectroscopy. The surface hydrophobicity of hemoglobin was reduced by 20.90-65.05 % after glycosylation, along with the observations of elevated water-holding capacity, likely owing to the introduction of hydrophilic groups. Antioxidant capacity of glycosylated products (0.41-0.66 µM Trolox/mg protein) was markedly greater than that of original protein (0.06 µM Trolox/mg protein) due to the formation of brown polymers with antioxidant activity. In addition, glycosylation improved in vitro digestibility of hemoglobin by 41.15-69.09 %, which could be attributed to less ß-sheet in secondary structures. Moreover, hemoglobin (324.38 ng/mg) exhibited better iron absorption than FeSO4 (121.63 ng/mg), with the value being further enhanced by glycosylation (442.73 ng/mg), which may be due to the improved protein digestibility and iron-chelating capacity.


Asunto(s)
Arcidae , Quitosano , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Disponibilidad Biológica , Quitosano/metabolismo , Glicosilación , Hemoglobinas/química , Hierro/metabolismo , Quelantes del Hierro/metabolismo , Micronutrientes/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA