Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7966): 799-807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316670

RESUMEN

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Asunto(s)
Hemípteros , Proteínas de Insectos , Oryza , Defensa de la Planta contra la Herbivoria , Proteínas de Plantas , Animales , Hemípteros/inmunología , Hemípteros/fisiología , Leucina/metabolismo , Nucleótidos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/inmunología , Oryza/metabolismo , Oryza/fisiología , Defensa de la Planta contra la Herbivoria/inmunología , Defensa de la Planta contra la Herbivoria/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insectos/metabolismo , Autofagia
2.
Proc Natl Acad Sci U S A ; 119(34): e2208759119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969741

RESUMEN

Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.


Asunto(s)
Oryza , Infertilidad Vegetal , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo
3.
Nat Rev Genet ; 19(8): 505-517, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29872215

RESUMEN

Rice is a staple crop for half the world's population, which is expected to grow by 3 billion over the next 30 years. It is also a key model for studying the genomics of agroecosystems. This dual role places rice at the centre of an enormous challenge facing agriculture: how to leverage genomics to produce enough food to feed an expanding global population. Scientists worldwide are investigating the genetic variation among domesticated rice species and their wild relatives with the aim of identifying loci that can be exploited to breed a new generation of sustainable crops known as Green Super Rice.


Asunto(s)
Productos Agrícolas/genética , Genoma de Planta , Oryza/genética , Plantas Modificadas Genéticamente/genética , Productos Agrícolas/crecimiento & desarrollo , Variación Genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
4.
Plant J ; 112(1): 68-83, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912411

RESUMEN

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Asunto(s)
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
5.
Plant Cell ; 32(11): 3469-3484, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32843433

RESUMEN

CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.


Asunto(s)
Flores/fisiología , Oryza/fisiología , Proteínas de Plantas/química , Sitios de Unión , Cristalografía por Rayos X , ADN de Plantas/metabolismo , Familia de Multigenes , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Oryza/genética , Fotoperiodo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
6.
Opt Lett ; 48(18): 4837-4840, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707915

RESUMEN

The Gaussian-modulated coherent state (GMCS) is a well-known continuous-variable quantum key distribution (CV-QKD) protocol that is robust to incoherent background noise and can effectively suppress ambient light in free space. However, it is difficult to implement this protocol in free space using existing polarization coding schemes. In this Letter, we propose a polarization coding structure based on a self-compensating fiber Sagnac interferometer, which can reduce the required modulation voltage by two orders of magnitude and achieve fast and arbitrary polarization modulation, and experimentally demonstrate polarization coding-based GMCS CV-QKD for, it is believed, the first time. The proposed polarization modulation structure, which uses off-the-shelf fiber components, is compact, simple, and suitable for mobile terminals, such as flying lifts.

7.
Proc Natl Acad Sci U S A ; 117(7): 3867-3873, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32024752

RESUMEN

In plants, enhanced defense often compromises growth and development, which is regarded as trade-offs between growth and defense. Here we identified a gene, OsALDH2B1, that functions as a master regulator of the growth-defense trade-off in rice. OsALDH2B1 has its primary function as an aldehyde dehydrogenase and a moonlight function as a transcriptional regulator. Loss of function of OsALDH2B1 greatly enhanced resistance to broad-spectrum pathogens, including fungal blast, bacterial leaf blight, and leaf streak, but caused severe phenotypic changes such as male sterility and reduced plant size, grain size, and number. We showed that its primary function as a mitochondrial aldehyde dehydrogenase conditions male fertility. Its moonlight function of transcriptional regulation, featuring both repressing and activating activities, regulates a diverse range of biological processes involving brassinolide, G protein, jasmonic acid, and salicylic acid signaling pathways. Such regulations cause large impacts on the morphology and immunity of rice plants. The versatile functions of OsALDH2B1 provide an example of the genic basis of growth-defense trade-offs in plants.


Asunto(s)
Aldehído Deshidrogenasa/inmunología , Regulación de la Expresión Génica de las Plantas , Oryza/crecimiento & desarrollo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/inmunología , Aldehído Deshidrogenasa/genética , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Magnaporthe/fisiología , Oryza/genética , Oryza/metabolismo , Oryza/microbiología , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
8.
Plant Physiol ; 186(2): 1025-1041, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33620495

RESUMEN

Heterosis refers to the superior performance of hybrid lines over inbred parental lines. Besides genetic variation, epigenetic differences between parental lines are suggested to contribute to heterosis. However, the precise nature and extent of differences between the parental epigenomes and the reprograming in hybrids that govern heterotic gene expression remain unclear. In this work, we analyzed DNA methylomes and transcriptomes of the widely cultivated and genetically studied elite hybrid rice (Oryza sativa) SY63, the reciprocal hybrid, and the parental varieties ZS97 and MH63, for which high-quality reference genomic sequences are available. We showed that the parental varieties displayed substantial variation in genic methylation at CG and CHG (H = A, C, or T) sequences. Compared with their parents, the hybrids displayed dynamic methylation variation during development. However, many parental differentially methylated regions (DMRs) at CG and CHG sites were maintained in the hybrid. Only a small fraction of the DMRs displayed non-additive DNA methylation variation, which, however, showed no overall correlation relationship with gene expression variation. In contrast, most of the allelic-specific expression (ASE) genes in the hybrid were associated with DNA methylation, and the ASE negatively associated with allelic-specific methylation (ASM) at CHG. These results revealed a specific DNA methylation reprogramming pattern in the hybrid rice and pointed to a role for parental CHG methylation divergence in ASE, which is associated with phenotype variation and hybrid vigor in several plant species.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Vigor Híbrido/genética , Oryza/genética , Alelos , Epigenoma , Transcriptoma
9.
Biomacromolecules ; 23(2): 530-542, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34965723

RESUMEN

Ice formation and recrystallization exert severe impairments to cellular cryopreservation. In light of cell-damaging washing procedures in the current glycerol approach, many researches have been devoted to the development of biocompatible cryoprotectants for optimal bioprotection of human erythrocytes. Herein, we develop a novel ACTIVE glycopeptide of saccharide-grafted ε-poly(L-lysine), that can be credited with adsorption on membrane surfaces, cryopreservation with trehalose, and icephilicity for validity of human erythrocytes. Then, by Borch reductive amination or amidation, glucose, lactose, maltose, maltotriose, or trehalose was tethered to ε-polylysine. The synthesized ACTIVE glycopeptides with intrinsic icephilicity could localize on the membrane surface of human erythrocytes and improve cryopreservation with trehalose, so that remarkable post-thaw cryosurvival of human erythrocytes was achieved with a slight variation in cell morphology and functions. Human erythrocytes (∼50% hematocrit) in cryostores could maintain high cryosurvival above 74%, even after plunged in liquid nitrogen for 6 months. Analyses of differential scanning calorimetry, Raman spectroscopy, and dynamic ice shaping suggested that this cryopreservation protocol combined with the ACTIVE glycopeptide and trehalose could enhance the hydrogen bond network in nonfrozen solutions, resulting in inhibition of recrystallization and growth of ice. Therefore, the ACTIVE glycopeptide can be applied as a trehalose-associated "chaperone", providing a new way to serve as a candidate in glycerol-free human erythrocyte cryopreservation.


Asunto(s)
Hielo , Trehalosa , Supervivencia Celular , Criopreservación/métodos , Crioprotectores/farmacología , Eritrocitos , Glicerol/farmacología , Glicopéptidos/farmacología , Humanos , Trehalosa/farmacología
11.
Proc Natl Acad Sci U S A ; 116(12): 5653-5658, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833384

RESUMEN

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


Asunto(s)
Vigor Híbrido/genética , Oryza/genética , Alelos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Frecuencia de los Genes/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo/métodos , Genómica , Vigor Híbrido/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN , Transcriptoma/genética
12.
J Exp Bot ; 72(20): 6963-6976, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34283218

RESUMEN

Heterosis of grain yield is closely associated with heading date in crops. Gene combinations of the major heading date genes Ghd7, Ghd8, and Hd1 play important roles in enhancing grain yield and adaptation to ecological regions in rice. However, the predominant three-gene combinations for a specific ecological region remain unclear in both three-line and two-line hybrids. In this study, we sequenced these three genes of 50 cytoplasmic male sterile/maintainer lines, 31 photo-thermo-sensitive genic male sterile lines, and 109 restorer lines. Sequence analysis showed that hybrids carrying strong functional alleles of Ghd7 and Hd1 and non-functional Ghd8 are predominant in three-line hybrids and are recommended for rice production in the subtropics around 30°N/S. Hybrids carrying strong functional Ghd7 and Ghd8 and non-functional Hd1 are predominant in two-line hybrids and are recommended for low latitude areas around 23.5°N/S rich in photothermal resources. Hybrids carrying strong functional Ghd7 and Ghd8 and functional Hd1 were not identified in commercial hybrids in the middle and lower reaches of the Yangtze River, but they have high yield potential in tropical regions because they have the strongest photoperiod sensitivity. Based on these findings, two genic sterile lines, Xiangling 628S and C815S, whose hybrids often head very late, were diagnosed with these three genes, and Hd1 was targeted to be knocked out in Xiangling 628S and replaced with hd1 in C815S. The hybrids developed from both modified sterile lines in turn had appropriate heading dates and significantly improved grain yield. This study provides new insights for breeding design to develop hybrids for various regions.


Asunto(s)
Oryza , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Vigor Híbrido/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Opt Lett ; 46(11): 2573-2576, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061059

RESUMEN

There is an increasing demand for multiplexing of quantum key distribution with optical communications in single fiber in consideration of high costs and practical applications in the metropolitan optical network. Here, we realize the integration of quantum key distribution and an optical transport network of 80 Gbps classical data at 15 dBm launch power over 50 km of the widely used standard (G.652 Recommendation of the International Telecom Union Telecom Standardization Sector) telecom fiber. A secure key rate of 11 Kbps over 20 km is obtained. By tolerating a high classical optical power up to 18 dBm of 160 Gbps classical data on single-mode fiber, our result shows the potential and tolerance of quantum key distribution being used in future large capacity transmission systems, such as metropolitan area networks and data centers. The quantum key distribution system is stable, practical, and insensitive to the polarization disturbance of channels by using a phase coding system based on a Faraday-Michelson interferometer. We also discuss the fundamental limit for quantum key distribution performance in the multiplexing environment.

14.
Opt Lett ; 46(24): 6099-6102, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913926

RESUMEN

The demand for the integration of quantum key distribution (QKD) and classical optical communication in the same optical fiber medium greatly increases as fiber resources and the flexibility of practical applications are taken into consideration. To satisfy the needs of the mass deployment of ultra-high power required for classical optical networks integrating QKD, we implement the discrete variable quantum key distribution (DV-QKD) under up to 25 dBm launch power from classical channels over 75 km on an ultra-low-loss (ULL) fiber by combining a finite-key security analysis method with the noise model of classical signals. To the best of our knowledge, this is the highest power launched by classical signals on the coexistence of DV-QKD and classical communication. The results exhibit the feasibility and tolerance of our QKD system for use in ultra-high-power classical communications.

15.
Plant Biotechnol J ; 18(1): 57-67, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31124256

RESUMEN

Hybrid breeding is the main strategy for improving productivity in many crops, especially in rice and maize. Genomic hybrid breeding is a technology that uses whole-genome markers to predict future hybrids. Predicted superior hybrids are then field evaluated and released as new hybrid cultivars after their superior performances are confirmed. This will increase the opportunity of selecting true superior hybrids with minimum costs. Here, we used genomic best linear unbiased prediction to perform hybrid performance prediction using an existing rice population of 1495 hybrids. Replicated 10-fold cross-validations showed that the prediction abilities on ten agronomic traits ranged from 0.35 to 0.92. Using the 1495 rice hybrids as a training sample, we predicted six agronomic traits of 100 hybrids derived from half diallel crosses involving 21 parents that are different from the parents of the hybrids in the training sample. The prediction abilities were relatively high, varying from 0.54 (yield) to 0.92 (grain length). We concluded that the current population of 1495 hybrids can be used to predict hybrids from seemingly unrelated parents. Eventually, we used this training population to predict all potential hybrids of cytoplasm male sterile lines from 3000 rice varieties from the 3K Rice Genome Project. Using a breeding index combining 10 traits, we identified the top and bottom 200 predicted hybrids. SNP genotypes of the training population and parameters estimated from this training population are available for general uses and further validation in genomic hybrid prediction of all potential hybrids generated from all varieties of rice.


Asunto(s)
Hibridación Genética , Oryza/genética , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta , Genómica , Modelos Genéticos , Polimorfismo de Nucleótido Simple
16.
Theor Appl Genet ; 133(5): 1427-1442, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31915875

RESUMEN

KEY MESSAGE: The "Green Super Rice" (GSR) project aims to fundamentally transform crop production techniques and promote the development of green agriculture based on functional genomics and breeding of GSR varieties by whole-genome breeding platforms. Rice (Oryza sativa L.) is one of the leading food crops of the world, and the safe production of rice plays a central role in ensuring food security. However, the conflicts between rice production and environmental resources are becoming increasingly acute. For this reason, scientists in China have proposed the concept of Green Super Rice for promoting resource-saving and environment-friendly rice production, while still achieving a yield increase and quality improvement. GSR is becoming one of the major goals for agricultural research and crop improvement worldwide, which aims to mine and use vital genes associated with superior agronomic traits such as high yield, good quality, nutrient efficiency, and resistance against insects and stresses; establish genomic breeding platforms to breed and apply GSR; and set up resource-saving and environment-friendly cultivation management systems. GSR has been introduced into eight African and eight Asian countries and has contributed significantly to rice cultivation and food security in these countries. This article mainly describes the GSR concept and recent research progress, as well as the significant achievements in GSR breeding and its application.


Asunto(s)
Genoma de Planta , Oryza/clasificación , Oryza/genética , Fitomejoramiento/normas , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , África , Asia , Oryza/crecimiento & desarrollo , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
17.
Theor Appl Genet ; 133(4): 1337, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32076749

RESUMEN

The article Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa.

18.
Theor Appl Genet ; 133(1): 59-71, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31549182

RESUMEN

KEY MESSAGE: A whole genome bin map was developed for a MAGIC population. Association studies for heading date at bin level exhibited powerful QTL mapping and identified favorable alleles. The presumed advantages of multiparent advanced generation intercross (MAGIC) population in quantitative trait locus (QTL) mapping were not fully utilized in the previous studies in which genome-wide association studies (GWAS) were conducted at only single nucleotide polymorphism level. In this study, we genotyped a rice four-way MAGIC population of 247 F7 lines and their parents by sequencing. A total of 5934 bins with an average length of 65 kb were constructed and covered 97% of the genome. The MAGIC population showed low population structure and balanced parental contributions. A bin-based GWAS for heading date identified 4 QTLs in three environments. Three major QTLs were mapped exactly to the bins where the major heading date genes DTH3, Ghd7.1 and Ghd8 were located. Multiple comparisons showed that different parental alleles had varied genetic effects. Like DTH3, the alleles of the Guichao 2/YJSM, IR34 and Cypress had larger, intermediate and no effects, respectively. Based on comparative sequencing of 8 known heading date genes undetected in this MAGIC population, only Ghd7 exhibited diverse function among parents. The failure in Ghd7 mapping was well explained by its interaction with Hd1 because Ghd7 had no effects on heading date when combined with the nonfunctional hd1 carried by all four parents. Overall, bin-based GWAS have more mapping power and higher resolution with a MAGIC population and provide favorable alleles to breeders. The use of more diversified parents is encouraged to develop a MAGIC population for detecting more QTLs for important agronomical traits.


Asunto(s)
Alelos , Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Cromosomas de las Plantas/genética , Genética de Población , Haplotipos/genética , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Recombinación Genética/genética
19.
BMC Cancer ; 19(1): 1094, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718595

RESUMEN

BACKGROUND: The incidence of papillary thyroid carcinoma (PTC) has been increasing worldwide in recent years. Therefore, novel potential therapeutic targets for PTC are urgently needed. Enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to PRC2, plays important roles in epigenetic silencing and cell cycle regulation. EZH2 overexpression has been found in several malignant tumor tissues, while its expression and function in PTC are largely unknown. METHODS: Sixty-five cases of PTC tissue confirmed by pathology and 30 cases of normal thyroid tissue adjacent to PTC tissue were collected from patients undergoing surgical treatment, between February 2003 and February 2006. We investigated the clinic pathologic significance of EZH2 expression using Realtime-PCR and IHC in 65 human PTC tissues and 30 normal thyroid tissue samples. The EZH2 expression in human PTC cell lines (K1 and W3) and the normal thyroid follicular epithelial cell line Nthy-ori 3-1 was analyzed by Western blotting and Realtime PCR. The expressions of ERα and ERß in cell lines were analyzed by Realtime PCR.The tumor cell biological behavior was evaluated by CCK8 assay, colony formation assay, transwell migration assay and xenograft tumors model. RESULTS: Higher rate of EZH2 expression was found in PTC tissues than in normal thyroid tissues, EZH2 expression is associated with lymph node metastasis and recurrent. Inhibition of EZH2 in PTC cell lines downregulates cellular proliferation and migration. PTC is a disease with high incidence of female and E2-ERα upregulates EZH2 expression. CONCLUSIONS: These results suggest a potential role of EZH2 for the PTC growth and metastasis. As a novel therapy, a pharmacological therapy targeting EZH2 has full potential in treatment of PTC.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Xenoinjertos , Humanos , Inmunohistoquímica , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Cáncer Papilar Tiroideo/patología , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA