Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105238, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690687

RESUMEN

Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease. It plays a key role in iron homeostasis by suppressing the iron-regulatory hormone, hepcidin. Lack of functional MT2 results in an inappropriately high hepcidin and iron-refractory iron-deficiency anemia. Mt2 cleaves multiple components of the hepcidin-induction pathway in vitro. It is inhibited by the membrane-anchored serine protease inhibitor, Hai-2. Earlier in vivo studies show that Mt2 can suppress hepcidin expression independently of its proteolytic activity. In this study, our data indicate that hepatic Mt2 was a limiting factor in suppressing hepcidin. Studies in Tmprss6-/- mice revealed that increases in dietary iron to ∼0.5% were sufficient to overcome the high hepcidin barrier and to correct iron-deficiency anemia. Interestingly, the increased iron in Tmprss6-/- mice was able to further upregulate hepcidin expression to a similar magnitude as in wild-type mice. These results suggest that a lack of Mt2 does not impact the iron induction of hepcidin. Additional studies of wild-type Mt2 and the proteolytic-dead form, fMt2S762A, indicated that the function of Mt2 is to lower the basal levels of hepcidin expression in a manner that primarily relies on its nonproteolytic role. This idea is supported by the studies in mice with the hepatocyte-specific ablation of Hai-2, which showed a marginal impact on iron homeostasis and no significant effects on iron regulation of hepcidin. Together, these observations suggest that the function of Mt2 is to set the basal levels of hepcidin expression and that this process is primarily accomplished through a nonproteolytic mechanism.

2.
J Biol Chem ; 291(23): 12322-35, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27072365

RESUMEN

Hemojuvelin (HJV) regulates iron homeostasis by direct interaction with bone morphogenetic protein (BMP) ligands to induce hepcidin expression through the BMP signaling pathway in the liver. Crystallography studies indicate that HJV can simultaneously bind to both BMP2 and the ubiquitously expressed cell surface receptor neogenin. However, the role of the neogenin-HJV interaction in the function of HJV is unknown. Here we identify a mutation in HJV that specifically lowers its interaction with neogenin. Expression of this mutant Hjv in the liver of Hjv(-/-) mice dramatically attenuated its induction of BMP signaling and hepcidin mRNA, suggesting that interaction with neogenin is critical for the iron regulatory function of HJV. Further studies revealed that neogenin co-immunoprecipitated with ALK3, an essential type-I BMP receptor for hepatic hepcidin expression. Neogenin has also been shown to facilitate the cleavage of HJV by furin in transfected cells. Surprisingly, although cleavage of HJV by furin has been implicated in the regulation of HJV function in cell culture models and furin-cleaved soluble Hjv is detectable in the serum of mice, mutating the furin cleavage site did not alter the stimulation of hepcidin expression by Hjv in mice. In vivo studies validated the important role of HJV-BMP interaction for Hjv stimulation of BMP signaling and hepcidin expression. Together these data support a model in which neogenin acts as a scaffold to facilitate assembly of the HJV·BMP·BMP receptor complex to induce hepcidin expression.


Asunto(s)
Regulación de la Expresión Génica , Hepcidinas/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Ligadas a GPI , Células HEK293 , Células HeLa , Proteína de la Hemocromatosis , Células Hep G2 , Hepcidinas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones de la Cepa 129 , Ratones Noqueados , Mutación , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA