RESUMEN
Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}âE_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.
RESUMEN
In three dimensions, quasi-one-dimensional (Q1D) transport has traditionally been associated with systems featuring a Q1D chain structure. Here, based on first-principle calculations, we go beyond this understanding to show that the Q1D transport can also be realized in certain three-dimensional (3D) altermagnetic (AM) metals with a topological nodal net in momentum space but lacking Q1D chain structure in real space, including the existing compounds ß-Fe_{2}(PO_{4})O, Co_{2}(PO_{4})O, and LiTi_{2}O_{4}. These materials exhibit an AM ground state and feature an ideal crossed Z^{3} Weyl nodal line in each spin channel around Fermi level, formed by three straight and flat nodal lines traversing the entire Brillouin zone. These nodal lines eventually lead to an AM Z^{3} nodal net. Surprisingly, the electronic conductivity σ_{xx} in these topological nodal net metals is dozens of times larger than σ_{yy} and σ_{zz} in the up-spin channel, while σ_{yy} dominates transport in the down-spin channel. This suggests a distinctive Q1D transport signature in each spin channel, and the principal moving directions for the two spin channels are orthogonal, resulting in Q1D direction-dependent spin transport. This novel phenomenon cannot be found in both conventional 3D bulk materials and Q1D chain materials. In particular, the Q1D spin transport gradually disappears as the Fermi energy moves away from the nodal net, further confirming its topological origin. Our Letter not only enhances the comprehension of topological physics in altermagnets but also opens a new direction for the exploration of topological spintronics.
RESUMEN
We demonstrate the emergence of a pronounced thermal transport in the recently discovered class of magnetic materials-altermagnets. From symmetry arguments and first-principles calculations performed for the showcase altermagnet, RuO_{2}, we uncover that crystal Nernst and crystal thermal Hall effects in this material are very large and strongly anisotropic with respect to the Néel vector. We find the large crystal thermal transport to originate from three sources of Berry's curvature in momentum space: the Weyl fermions due to crossings between well-separated bands, the strong spin-flip pseudonodal surfaces, and the weak spin-flip ladder transitions, defined by transitions among very weakly spin-split states of similar dispersion crossing the Fermi surface. Moreover, we reveal that the anomalous thermal and electrical transport coefficients in RuO_{2} are linked by an extended Wiedemann-Franz law in a temperature range much wider than expected for conventional magnets. Our results suggest that altermagnets may assume a leading role in realizing concepts in spin caloritronics not achievable with ferromagnets or antiferromagnets.
RESUMEN
Two-dimensional checkerboard lattice, the simplest line-graph lattice, has been intensively studied as a toy model, while material design and synthesis remain elusive. Here, we report theoretical prediction and experimental realization of the checkerboard lattice in monolayer Cu2N. Experimentally, monolayer Cu2N can be realized in the well-known N/Cu(100) and N/Cu(111) systems that were previously mistakenly believed to be insulators. Combined angle-resolved photoemission spectroscopy measurements, first-principles calculations, and tight-binding analysis show that both systems host checkerboard-derived hole pockets near the Fermi level. In addition, monolayer Cu2N has outstanding stability in air and organic solvents, which is crucial for further device applications.
RESUMEN
Recently discovered high-quality nodal chain spin-gapless semimetals MF_{3} (M=Pd, Mn) feature an ultraclean nodal chain in the spin up channel residing right at the Fermi level and displaying a large spin gap leading to a 100% spin polarization of transport properties. Here, we investigate both intrinsic and extrinsic contributions to anomalous and spin transport in this class of materials. The dominant intrinsic origin is found to originate entirely from the gapped nodal chains without the entanglement of any other trivial bands. The side-jump mechanism is predicted to be negligibly small, but intrinsic skew scattering enhances the intrinsic Hall and Nernst signals significantly, leading to large values of respective conductivities. Our findings open a new material platform for exploring strong anomalous and spin transport properties in magnetic topological semimetals.
RESUMEN
Nodal monoloop, enjoying the cleanest scenario with a single loop, is recognized as the basic building block of intricate linked loops including chains, nets, and knots. Here, we explore the interplay of magnetic ordering and band topology in one system by introducing a brand-new quantum state, referred to as Weyl monoloop semi-half-metal, which is characterized by a single loop at the Fermi level stemming from the same spin channel. Such a nodal line Fermion, yielding 100% spin polarization, is protected by mirror (Mz) symmetry. As a prominent example, a realistic rutile-type metal fluorides LiV2F6 achieves the hitherto unmaterialized state, featuring fully spin-polarized ultraflat surface states. More interestingly, LiV2F6 has a "soft" ferromagnetic property, which is one of the desired systems to control the anomalous Hall effect by rotating the magnetization direction. Our findings offer a promising candidate for exploring the topology and magnetism with intriguing effects.
RESUMEN
Spin-gapless semimetals (SGSMs), which generate 100% spin polarization, are viewed as promising semi-half-metals in spintronics with high speed and low consumption. We propose and characterize a new Z_{2} class of topological nodal line (TNL) in SGSMs. The proposed TNLSGSMs are protected by space-time inversion symmetry or glide mirror symmetry with two-dimensional (2D) fully spin-polarized nearly flat surface states. Based on first-principles calculations and effective model analysis, a series of high-quality materials with R3[over ¯]c and R3c space groups are predicted to realize such TNLSGSMs (chainlike). The 2D fully spin-polarized nearly flat surface states may provide a route to achieving equal spin pairing topological superconductivity as well as topological catalysts.
RESUMEN
Two-dimensional (2D) materials have attracted great attention and spurred rapid development in both fundamental research and device applications. The search for exotic physical properties, such as magnetic and topological order, in 2D materials could enable the realization of novel quantum devices and is therefore at the forefront of materials science. Here, we report the discovery of twofold degenerate Weyl nodal lines in a 2D ferromagnetic material, a single-layer gadolinium-silver compound, based on combined angle-resolved photoemission spectroscopy measurements and theoretical calculations. These Weyl nodal lines are symmetry protected and thus robust against external perturbations. The coexistence of magnetic and topological order in a 2D material is likely to inform ongoing efforts study the rich physics in 2D topological ferromagnets.
RESUMEN
Searching for realistic materials able to realize room-temperature quantum spin Hall (QSH) effects is currently a growing field, especially when compatibility with the current group-IV electronics industry is required. Here we predict, through first-principles calculations, a new class of QSH phases in flattened germanene and stanene functionalized with X atoms (f-GeX2 and f-SnX2; X = H, F, Cl, Br, I) with a bulk gap as large as 0.56 eV, that can be tuned efficiently under mechanical strain. More interestingly, different from the normal band order in buckled germanane and stanane, the structural flatness leads to an inverted band order without spin-orbit coupling (SOC), whereas the SOC only opens the band gap. We also find that the characteristics of edge states, such as the Fermi velocity, are enhanced greatly by edge modification. When these films are deposited on a BN substrate, a nontrivial QSH state is preserved with a Dirac cone lying within the nontrivial band gap. These findings provide a promising platform for future realistic applications of the QSH effect at room temperature in two-dimensional group-IV films.
RESUMEN
The quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices due to the robust gapless states inside the insulating bulk gap. However, QSH insulators currently suffer from requiring extremely high vacuums or low temperatures. Here, using first-principles calculations, we predict cyanogen-decorated plumbene (PbCN) to be a new QSH phase, with a large gap of 0.92 eV, that is robust and tunable under external strain. The band topology mainly stems from s-pxy band inversion related to the lattice symmetry, while the strong spin-orbit coupling (SOC) of the Pb atoms only opens a large gap. When halogen atoms are incorporated into PbCN, the resulting inversion-asymmetric PbFx(CN)1-x can host the QSH effect, accompanied by the presence of a sizable Rashba spin splitting at the top of the valence band. Furthermore, the Te(111)-terminated BaTe surface is proposed to be an ideal substrate for experimental realization of these monolayers, without destroying their nontrivial topology. These findings provide an ideal platform to enrich topological quantum phenomena and expand the potential applications in high-temperature spintronics.
RESUMEN
The control of spin without a magnetic field is one of the challenges in developing spintronic devices. Here, based on first-principles calculations, we predict a new kind of ferromagnetic half-metal (HM) with a Curie temperature of 244 K in a two-dimensional (2D) germanene van der Waals heterostructure (HTS). Its electronic band structures and magnetic properties can be tuned with respect to external strain and electric field. More interestingly, a transition from HM to bipolar-magnetic-semiconductor (BMS) to spin-gapless-semiconductor (SGS) in a HTS can be realized by adjusting the interlayer spacing. These findings provide a promising platform for 2D germanene materials, which hold great potential for application in nanoelectronic and spintronic devices.
RESUMEN
It is challenging to epitaxially grow germanene on conventional semiconductor substrates. Based on first-principles calculations, we investigate the structural and electronic properties of germanene/germanane heterostructures (HTSs). The results indicate that the Dirac cone with nearly linear band dispersion of germanene is maintained in the band gap of the substrate. Remarkably, the band gaps opened in these HTSs can be effectively modulated by the external electric field and strain, and they also feature very low effective masses and high carrier mobilities. These results provide a route to design high-performance FETs operating at room temperature in nanodevices.
RESUMEN
Hydrogen, a simple and magic element, has attracted increasing attention for its effective incorporation within solids and powerful manipulation of electronic states. Here, we show that hydrogenation tackles common problems in two-dimensional borophene, e.g., stability and applicability. As a prominent example, a ladder-like boron hydride sheet, named as 2D ladder polyborane, achieves the desired outcome, enjoying the cleanest scenario with an anisotropic and tilted Dirac cone, that can be fully depicted by a minimal two-band tight-binding model. Introducing external fields, such as an electric field or a circularly polarized light field, can effectively induce distinctive massive Dirac fermions, whereupon four types of multi-field-driven topological domain walls hosting tunable chirality and valley indexes are further established. Moreover, the 2D ladder polyborane is thermodynamically stable at room temperature and supports highly switchable Dirac fermions, providing an ideal platform for realizing and exploring the various multi-field-tunable electronic states.
RESUMEN
The past decade has witnessed a surge of interest in exploring emergent particles in condensed matter systems. Novel particles, emerged as excitations around exotic band degeneracy points, continue to be reported in real materials and artificially engineered systems, but so far, we do not have a complete picture on all possible types of particles that can be achieved. Here, via systematic symmetry analysis and modeling, we accomplish a complete list of all possible particles in time-reversal-invariant systems. This includes both spinful particles such as electron quasiparticles in solids, and spinless particles such as phonons or even excitations in electric-circuit and mechanical networks. We establish detailed correspondence between the particle, the symmetry condition, the effective model, and the topological character. This obtained encyclopedia concludes the search for novel emergent particles and provides concrete guidance to achieve them in physical systems.
RESUMEN
Topological semimetals in ferromagnetic materials have attracted an enormous amount of attention due to potential applications in spintronics. Using first-principles density functional theory together with an effective lattice model, here we present a new family of topological semimetals with a fully spin-polarized nodal loop in alkaline metal monochalcogenide MX (M = Li, Na, K, Rb, or Cs; X = S, Se, or Te) monolayers. The half-metallic ferromagnetism can be established in MX monolayers, in which one nodal loop formed by two crossing bands with the same spin components is found at the Fermi energy. This nodal loop half-metal survives even when considering the spin-orbit coupling owing to the symmetry protection provided by the Mz mirror plane. The quantum anomalous Hall state and Weyl-like semimetal in this system can be also achieved by rotating the spin from the out-of-plane to the in-plane direction. The MX monolayers hosting rich topological phases thus offer an excellent platform for realizing advanced spintronic concepts.
RESUMEN
Van der Waals heterostructures of transition metal dichalcogenides with interlayer coupling offer an exotic platform to realize fascinating phenomena. Due to the type II band alignment of these heterostructures, electrons and holes are separated into different layers. The localized electrons induced doping in one layer, in principle, would lift the Fermi level to cross the spin-polarized upper conduction band and lead to strong manipulation of valley magnetic response. Here, we report the significantly enhanced valley Zeeman splitting and magnetic tuning of polarization for the direct optical transition of MoS2 in MoS2/WS2 heterostructures. Such strong enhancement of valley magnetic response in MoS2 stems from the change of the spin-valley degeneracy from 2 to 4 and strong many-body Coulomb interactions induced by ultrafast charge transfer. Moreover, the magnetic splitting can be tuned monotonically by laser power, providing an effective all-optical route towards engineering and manipulating of valleytronic devices and quantum-computation.
RESUMEN
The bottleneck of current studies on topological insulators is to identify better materials that can be fabricated into devices more feasibly. To search for novel topological materials, we developed a high-throughput framework that can be utilized to screen for candidates with known crystal structures and further showcase topological properties based on automated construction of Wannier functions. We have applied our methods to ternary compounds of Bi, Sb, and nitrides as a representative sample. The topological properties are characterized by the surface states, verified by auxiliary evaluation of the Z2 topological invariant. We successfully identified seven topological insulators. Our work paves the way to design novel topological materials.
RESUMEN
Correction for 'First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator' by Run-Wu Zhang, et al., Nanoscale, 2017, 9, 8207-8212.
RESUMEN
Two-dimensional (2D) large band-gap topological insulators (TIs) with highly stable structures are imperative for achieving dissipationless transport devices. However, to date, only very few materials have been experimentally observed to host the quantum spin Hall (QSH) effect at low temperature, thus obstructing their potential application in practice. Using first-principles calculations, herein, we predicted a new 2D TI in the porous allotrope of a bismuth monolayer, i.e. bismuthylene, its geometrical stability was confirmed via phonon spectrum and molecular dynamics simulations. Analysis of the electronic structures reveals that bismuthylene is a native QSH state with a band gap as large as 0.28 eV at the Γ point, which is smaller than that (0.50 eV) of the buckled Bi (111) and suitable for room temperature applications. Notably, it has a much lower energy than flattened Bi and a higher energy than buckled Bi (111) " [corrected] and flattened Bi films; thus, bismuthylene is feasible for experimental realization. Interestingly, the topological properties can be retained under strains within the range of -6%-3% and electrical fields up to 0.8 eV Å-1. A heterostructure was constructed by sandwiching bismuthylene between BN sheets, and the non-trivial topology of bismuthylene was retained with a sizable band gap. These findings provide a platform to design a large-gap QSH insulator based on the 2D bismuthylene films, which show potential applications in spintronic devices.
RESUMEN
Group III-V films are of great importance for their potential application in spintronics and quantum computing. Search for two-dimensional III-V films with a nontrivial large-gap are quite crucial for the realization of dissipationless transport edge channels using quantum spin Hall (QSH) effects. Here we use first-principles calculations to predict a class of large-gap QSH insulators in functionalized TlSb monolayers (TlSbX2; (X = H, F, Cl, Br, I)), with sizable bulk gaps as large as 0.22~0.40 eV. The QSH state is identified by Z2 topological invariant together with helical edge states induced by spin-orbit coupling (SOC). Noticeably, the inverted band gap in the nontrivial states can be effectively tuned by the electric field and strain. Additionally, these films on BN substrate also maintain a nontrivial QSH state, which harbors a Dirac cone lying within the band gap. These findings may shed new light in future design and fabrication of QSH insulators based on two-dimensional honeycomb lattices in spintronics.