Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 574(7780): 722-725, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645759

RESUMEN

The enzyme protochlorophyllide oxidoreductase (POR) catalyses a light-dependent step in chlorophyll biosynthesis that is essential to photosynthesis and, ultimately, all life on Earth1-3. POR, which is one of three known light-dependent enzymes4,5, catalyses reduction of the photosensitizer and substrate protochlorophyllide to form the pigment chlorophyllide. Despite its biological importance, the structural basis for POR photocatalysis has remained unknown. Here we report crystal structures of cyanobacterial PORs from Thermosynechococcus elongatus and Synechocystis sp. in their free forms, and in complex with the nicotinamide coenzyme. Our structural models and simulations of the ternary protochlorophyllide-NADPH-POR complex identify multiple interactions in the POR active site that are important for protochlorophyllide binding, photosensitization and photochemical conversion to chlorophyllide. We demonstrate the importance of active-site architecture and protochlorophyllide structure in driving POR photochemistry in experiments using POR variants and protochlorophyllide analogues. These studies reveal how the POR active site facilitates light-driven reduction of protochlorophyllide by localized hydride transfer from NADPH and long-range proton transfer along structurally defined proton-transfer pathways.


Asunto(s)
Clorofila/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Synechococcus/enzimología , Synechocystis/enzimología , Catálisis , Clorofila/química , Estructura Molecular , Fotoquímica , Protoclorofilida/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
2.
Nano Lett ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942742

RESUMEN

Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.

3.
Plant Biotechnol J ; 22(1): 216-232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37792967

RESUMEN

Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.


Asunto(s)
Arabidopsis , Infertilidad , Zea mays/genética , Zea mays/metabolismo , Edición Génica , Sistemas CRISPR-Cas/genética , Simulación del Acoplamiento Molecular , Pironas/metabolismo , Fitomejoramiento , Arabidopsis/genética , Lípidos , Polen/genética , Polen/metabolismo , Infertilidad/genética , Infertilidad/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Environ Manage ; 357: 120691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554452

RESUMEN

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous. This study aims to investigate the effects of phosphorus (P) deficiency on Cd accumulation, Cd subcellular distribution, and cell wall components in the roots of Salix caprea under Cd stress. The results revealed that under P deficiency conditions, there was a 35.4% elevation in Cd content in roots, coupled with a 60.1% reduction in Cd content in shoots, compared to the P sufficiency conditions. Under deficient P conditions, the predominant response of roots to Cd exposure was the increased sequestration of Cd in root cell walls. The sequestration of Cd in root cell walls increased from 37.1% under sufficient P conditions to 66.7% under P deficiency, with pectin identified as the primary Cd binding site under both P conditions. Among cell wall components, P deficiency led to a significant 31.7% increase in Cd content within pectin compared to P sufficiency conditions, but did not change the pectin content. Notably, P deficiency significantly increased pectin methylesterase (PME) activity by regulating the expression of PME and PMEI genes, leading to a 10.4% reduction in the degree of pectin methylesterification. This may elucidate the absence of significant changes in pectin content under P deficiency conditions and the concurrent increase in Cd accumulation in pectin. Fourier transform infrared spectroscopy (FTIR) results indicated an increase in carboxyl groups in the root cell walls under P deficiency compared to sufficient P treatment. The results provide deep insights into the mechanisms of higher Cd accumulation in root mediated by P deficiency.


Asunto(s)
Pectinas , Salix , Pectinas/química , Pectinas/metabolismo , Pectinas/farmacología , Cadmio/metabolismo , Salix/metabolismo , Raíces de Plantas/química , Pared Celular/metabolismo , Fósforo/análisis
5.
Phys Chem Chem Phys ; 25(18): 12629-12640, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128961

RESUMEN

The surface exchange coefficient (k) of porous mixed ionic-electronic conductors (MIECs) determines the device-level electrochemical performance of solid oxide cells. However, a great difference is reported for k values, which are measured using presently available technologies of electrical conductivity relaxation (ECR), electrochemical impedance spectroscopy (EIS), and oxygen isotope exchange (OIE). In terms of this issue, this perspective paper estimates the possible physiochemical processes for the oxygen reduction reaction (ORR) in porous MIECs by comparing the oxygen supply/consumption fluxes through calculation. Then, the potential problems associated with ECR, EIS, and OIE for application in porous materials are discussed regarding theory, assumptions, sample requirements, and data processing. Finally, gas diffusion effects are revealed by comparing the simulated and measured ECR profiles, which show that the ORR process can be significantly delayed by gas diffusion. This perspective aims to recommend a reasonable method to characterize the true ORR kinetics of porous electrodes and quantify the effect of gas diffusion.

6.
Anim Biotechnol ; 34(1): 8-14, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34097585

RESUMEN

The ovary can generate oocytes and secrete female hormones and thus is of great significance to animal fertility. In turn, the functioning of this organ has an effect on the profit margins of the livestock breeding industry. As the development-regulating gene and target gene of miR-202, SEPT7 might play an important role in ovarian growth. Therefore, we hypothesized that SEPT7 is related to ovarian traits owing to the regulation of gonad-specific miR-202. To further investigate the connection between bovine SEPT7 and ovarian development, we analyzed data from 408 samples. After genotyping and analyzing three selected loci, we found that two out of the three loci (L1 and L5) were polymorphic, of which the minimum allelic frequencies were 0.417 (L1) and 0.094 (L5). Moreover, one novel indel L1 of SEPT7 was associated with ovarian length (p < 0.05). More specifically, individuals with II and ID genotypes have longer ovaries than those with the DD genotype. Our work shows that SEPT7 can be selected as a testing marker gene for animal fertility. Our findings contribute to improving the prospects of the cattle industry and the wider use of genetic techniques in breeding.


Asunto(s)
MicroARNs , Ovario , Septinas , Animales , Bovinos , Femenino , Fertilidad/genética , Frecuencia de los Genes , Genotipo , MicroARNs/genética , Septinas/genética , Septinas/metabolismo
7.
Int Wound J ; 21(3): e14500, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990074

RESUMEN

Increased intraocular pressure (IOP) is a risk factor for glaucoma. One treatment option is trabeculectomy. Antimetabolic agents are used in the operation to decrease the post-operative scarring of the wound. The two most common medicines are Mitomycin C (MMC) and 5-Fluorouracil (5-FU). The aim of this research is to assess the effect of MMC on post-operation wound healing in comparison with 5-FU in addition to trabeculectomy. Well, we went through four common databases. Our language was limited to English during the study. The last time we looked at the e-databases was August 2023. Case control studies were performed where MMC resulted in better wound healing than 5-FU. Researchers selected a total of 1023 trials and eventually selected six trials for data analysis. Four hundred and ninety one cases of glaucoma were treated with trabeculectomy. Among them, 246 were given MMC and 245 were given 5-FU during operation. Six trials showed that there was no statistical difference between MMC and 5-FU in the incidence of post-operative wound leak in glaucoma patients who received trabeculectomy (OR, 1.21; 95% CI, 0.63-2.30 p = 0.57); Five trials demonstrated that MMC was associated with a reduced risk of post-operative corneal damage compared to 5-FU injection (OR, 0.18; 95% CI, 0.06-0.56 p = 0.003); In both trials, the incidence of post-operative bleeding was not significantly different from that of 5-FU injected in the MMC group (OR, 0.33; 95% CI, 0.05-2.16 p = 0.25). Our results indicate that MMC is superior to 5-FU in the reduction of post-operative corneal injury. Additional comparisons between MMC and 5-FU are required in order to increase the reliability and effectiveness of these findings.

8.
Small ; 18(18): e2200524, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35362260

RESUMEN

High-entropy oxides (HEOs) are gradually becoming a new focus for lithium-ion battery (LIB) anodes due to their vast element space/adjustable electrochemical properties and unique single-phase retention ability. However, the sluggish kinetics upon long cycling limits their further generalization. Here, oxygen vacancies with targeted functionality are introduced into rock salt-type (MgCoNiCuZn)O through a wet-chemical molten salt strategy to accelerate the ion/electron transmission. Both experimental results and theoretical calculations reveal the potential improvement of lithium storage, charge transfer, and diffusion kinetics from HEO surface defects, which ultimately leads to enhanced electrochemical properties. The currently raised strategy offers a modular approach and enlightening insights for defect-induced HEO-based anodes.

9.
Plant Biotechnol J ; 20(12): 2342-2356, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36070225

RESUMEN

Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen-stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade-off of lipid-metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male-sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map-based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)-localized polyketide synthase (PKS) with catalytic activities to malonyl-CoA and midchain-fatty acyl-CoA to generate triketide and tetraketide α-pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9-10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84-ZmPKSB regulatory module controlled a trade-off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine-tuning regulation of lipid-metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.


Asunto(s)
Polen , Zea mays , Zea mays/genética , Polen/genética , Fertilidad , Lípidos , Coenzima A , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Flores/genética , Mutación
10.
Opt Express ; 30(2): 2852-2862, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209417

RESUMEN

The emergence of monolayer material has opened new avenue for manipulating light beyond the capability of traditional optics. However, controlling the terahertz (THz) wave with magnetized monolayer graphene based on multi-beam interference method is interesting but yet reported. In this article, we report an optically induced lattice with tunability in THz by interfering four plane waves in the magnetized monolayer graphene. We show that the optical properties of the induced optical lattice can be efficiently tuned by varying the optical parameter of the interference beams (i.e., the photon detuning and the Rabi frequency), resulting in both amplitude- and phase-type lattice. Based on Fraunhofer diffraction theory, it is found that the far-field diffraction efficiency is adjustable via varying the probe detuning. Moreover, it is also found that the probe field is diffracted into the high-order direction when the photon detuning is within the triangle-like anti-centrosymmetric region. Such a tunable THz lattice may provide a versatile tool for all-optical switching at the few photons level and paves the way for next generation high-speed wireless communication.

11.
Genomics ; 113(2): 497-506, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370584

RESUMEN

Anther dehiscence releases pollen and therefore is a key event in plant sexual reproduction. Although anther dehiscence has been intensively studied in some plants, such as Arabidopsis thaliana and rice (Oryza sativa), the molecular mechanism of anther dehiscence in eggplant (Solanum melongena) is largely unknown. To provide insight into this mechanism, we used RNA-sequencing (RNA-seq) to analyze the transcriptomic profiles of one natural male-fertile line (F142) and two male-sterile lines (S12 and S13). We assembled 88,414 unigenes and identified 3446 differentially expressed genes (DEGs). GO and KEGG analysis indicated that these DEGs were mainly involved in "metabolic process", "catalytic activity", "biosynthesis of amino acids", and "carbon metabolism". The present study provides comprehensive transcriptomic profiles of eggplants that do and do not undergo anther dehiscence, and identifies a number of genes and pathways associated with anther dehiscence. The information deepens our understanding of the molecular mechanisms of anther dehiscence in eggplant.


Asunto(s)
Infertilidad Vegetal/genética , Solanum melongena/genética , Transcriptoma , Genes de Plantas , Solanum melongena/fisiología
12.
Plant Biotechnol J ; 19(9): 1769-1784, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33772993

RESUMEN

Identifying genic male-sterility (GMS) genes and elucidating their roles are important to unveil plant male reproduction and promote their application in crop breeding. However, compared with Arabidopsis and rice, relatively fewer maize GMS genes have been discovered and little is known about their regulatory pathways underlying anther and pollen development. Here, by sequencing and analysing anther transcriptomes at 11 developmental stages in maize B73, Zheng58 and M6007 inbred lines, 1100 transcription factor (TF) genes were identified to be stably differentially expressed among different developmental stages. Among them, 14 maize TF genes (9 types belonging to five TF families) were selected and performed CRISPR/Cas9-mediated gene mutagenesis, and then, 12 genes in eight types, including ZmbHLH51, ZmbHLH122, ZmTGA9-1/-2/-3, ZmTGA10, ZmMYB84, ZmMYB33-1/-2, ZmPHD11 and ZmLBD10/27, were identified as maize new GMS genes by using DNA sequencing, phenotypic and cytological analyses. Notably, ZmTGA9-1/-2/-3 triple-gene mutants and ZmMYB33-1/-2 double-gene mutants displayed complete male sterility, but their double- or single-gene mutants showed male fertility. Similarly, ZmLBD10/27 double-gene mutant displayed partial male sterility with 32.18% of aborted pollen grains. In addition, ZmbHLH51 was transcriptionally activated by ZmbHLH122 and their proteins were physically interacted. Molecular markers co-segregating with these GMS mutations were developed to facilitate their application in maize breeding. Finally, all 14-type maize GMS TF genes identified here and reported previously were compared on functional conservation and diversification among maize, rice and Arabidopsis. These findings enrich GMS gene and mutant resources for deeply understanding the regulatory network underlying male fertility and for creating male-sterility lines in maize.


Asunto(s)
Infertilidad Vegetal , Factores de Transcripción , Zea mays , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Infertilidad Vegetal/genética , Factores de Transcripción/genética , Zea mays/genética
13.
Arch Biochem Biophys ; 697: 108702, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33275878

RESUMEN

Kynurenine-3-monooxygenase (KMO) is an important therapeutic target for several brain disorders that has been extensively studied in recent years. Potent inhibitors towards KMO have been developed and tested within different disease models, showing great therapeutic potential, especially in models of neurodegenerative disease. The inhibition of KMO reduces the production of downstream toxic kynurenine pathway metabolites and shifts the flux to the formation of the neuroprotectant kynurenic acid. However, the efficacy of KMO inhibitors in neurodegenerative disease has been limited by their poor brain permeability. Combined with virtual screening and prodrug strategies, a novel brain penetrating KMO inhibitor has been developed which dramatically decreases neurotoxic metabolites. This review highlights the importance of KMO as a drug target in neurological disease and the benefits of brain permeable inhibitors in modulating kynurenine pathway metabolites in the central nervous system.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/metabolismo
14.
Nanotechnology ; 32(2): 024001, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32932245

RESUMEN

Development an alternative approach to efficiently and economically produce hydrogen from water to replace non-renewable fossil fuels is one of the great challenges in the energy field. In this paper, a Co foam (CF) with 90% porosity and pore size of a few tens of micrometers was prepared, on which FeCoP nanoflowers were in-situ formed. Such a combination was used as a new electrocatalyst/self-supporting electrode for high efficiency hydrogen evolution reaction. Thanks to the larger surface area (and thus many more active sites), and quicker mass transfer through the porous structure, the CF supported FeCoP electrode exhibited much better hydrogen evolution reaction (HER) performance than the commercial Ni foam supported counterpart prepared under identical conditions. In the case of the former, only -44 mV overpotential was required to achieve a geometric current density of -10 mA cm-2, and the electrode showed a high stability at a current density < -500 mA cm-2. The electrode developed in this work could be potentially used as a novel electrode for future large-scale production of hydrogen. In addition, the novel strategy reported here could be similarly used to develop many other types of self-supporting electrodes with further improved HER performance.

15.
J Pathol ; 250(3): 346-357, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31859368

RESUMEN

Angioimmunoblastic T-cell lymphoma (AITL) is a neoplastic proliferation of T follicular helper cells with clinical and histological presentations suggesting a role of antigenic drive in its development. Genetically, it is characterized by a stepwise acquisition of somatic mutations, with early mutations involving epigenetic regulators (TET2, DNMT3A) and occurring in haematopoietic stem cells, with subsequent changes involving signaling molecules (RHOA, VAV1, PLCG1, CD28) critical for T-cell biology. To search for evidence of potential oncogenic cooperation between genetic changes and intrinsic T cell receptor (TCR) signaling, we investigated somatic mutations and T-cell receptor ß (TRB) rearrangement in 119 AITL, 11 peripheral T-cell lymphomas with T follicular helper phenotype (PTCL-TFH), and 25 PTCL-NOS using Fluidigm polymerase chain reaction (PCR) and Illumina MiSeq sequencing. We confirmed frequent TET2, DNMT3A, and RHOA mutations in AITL (72%, 34%, 61%) and PTCL-TFH (73%, 36%, 45%) and showed multiple TET2 mutations (2 or 3) in 57% of the involved AITL and PTCL-TFH. Clonal TRB rearrangement was seen in 76 cases with multiple functional rearrangements (2-4) in 18 cases (24%). In selected cases, we confirmed bi-clonal T-cell populations and further demonstrated that these independent T-cell populations harboured identical TET2 mutations by using BaseScope in situ hybridization, suggesting their derivation from a common TET2 mutant progenitor cell population. Furthermore, both T-cell populations expressed CD4. Finally, in comparison with tonsillar TFH cells, both AITL and PTCL-TFH showed a significant overrepresentation of several TRB variable family members, particularly TRBV19*01. Our findings suggest the presence of parallel neoplastic evolutions from a common TET2 mutant haematopoietic progenitor pool in AITL and PTCL-TFH, albeit to be confirmed in a large series of cases. The biased TRBV usage in these lymphomas suggests that antigenic stimulation may play an important role in predilection of T cells to clonal expansion and malignant transformation. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas de Unión al ADN/genética , Linfadenopatía Inmunoblástica/inmunología , Linfoma de Células T/inmunología , Proteínas Proto-Oncogénicas/genética , Anciano , Alelos , Dioxigenasas , Frecuencia de los Genes , Humanos , Linfadenopatía Inmunoblástica/genética , Linfadenopatía Inmunoblástica/patología , Linfoma de Células T/genética , Linfoma de Células T/patología , Persona de Mediana Edad , Mutación , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/patología
16.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34360681

RESUMEN

The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Aldehído Oxidorreductasas/genética , Flores/metabolismo , Metabolismo de los Lípidos , MicroARNs/metabolismo , Zea mays/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G/metabolismo , Aldehído Oxidorreductasas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Polen/crecimiento & desarrollo , Polen/metabolismo , RNA-Seq , Zea mays/genética , Zea mays/crecimiento & desarrollo
17.
Nanotechnology ; 31(50): 505606, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-32906110

RESUMEN

Owing to their large specific areas, high thermal stability and chemical inertness, two-dimensional boron carbon nitride nanosheets (BCNNs) have captured much attention in recent years in the field of adsorption of pollutants. The formation of BCNNs via incorporating carbon into boron nitride (BN) can effectively improve the photoelectric and adsorption properties of the latter. In this work, carbon-doped BN (BCN) nanosheets were prepared at 1100 °C via a molten salt route using boric acid, melamine and glucose as the main starting materials. The effects of molten salt type and carbon doping level on the formation of BCN were investigated, and their isothermal adsorption properties in a methylene blue (MB) aqueous solution were evaluated based on the Langmuir and Freundlich models. The results indicated that using molten LiCl-KCl as a liquid medium was more favorable than NaCl-KCl to the formation of BCNNs. As-prepared BC0.4N sample possessed a sheet-like structure of about 10 nm thick and a specific surface area as high as 484 m2 g-1. Moreover, the adsorption test of MB demonstrated a high adsorption capacity of 249.04 mg g-1, which was about 14 times higher than that in the case of the pristine BN, and the kinetic rate constant value in the case of using BC0.4N is about ten times as high as that of BN following a pseudo-second-order model, suggesting that the as-formed BC0.4N nanosheets could be potentially used as a value-added effective adsorbent for future wastewater remediation.

18.
Nanotechnology ; 31(13): 134003, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783396

RESUMEN

ISOBAM-104-stabilized Ni2+ colloidal catalysts were synthesized through a facile method and used for hydrogen generation from hydrolysis of potassium borohydride (KBH4). Ni nanoparticles (NPs) were formed as the active phase during the catalytic process. Ultraviolet-visible spectrophotometry (UV-vis) and transmission electron microscopy were employed to characterize the structure and particle size of the as-formed Ni NPs. The results suggested that the catalytic activity of Ni2+ colloidal catalyst increased with the decreased size of as-formed Ni NPs, which is consistent with the results of density functional theory calculation. The highest catalytic activity of the catalyst can be 12400 ml-H2 min-1 g-Ni-1, which was even higher than that of noble Pt or Pd colloidal catalysts prepared using identical methods and catalytic conditions. According to the Arrhenius method, the ISOBAM-104-stabilized Ni2+ colloidal catalysts showed low activation energies of about 41.3 kJ mol-1 for the hydrogen generation from hydrolysis basic KBH4 solution.

19.
Int Heart J ; 61(3): 524-530, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32350204

RESUMEN

Infectious endocarditis (IE) is a rare disease with high mortality rate. Recently, red cell distribution width (RDW) has drawn special attention for predicting cardiovascular disease. This study aims to explore the relationship between RDW value and postoperative death of IE patients.Clinical records of patients with definite IE from Chinese People's Liberation Army General Hospital department of cardiovascular surgery were collected and analyzed. Clinical, echocardiographic, and biochemical variables were evaluated along with RDW.Results: A total of 158 consecutive IE patients (mean age 47.0 ± 16.3 years, male 61.4%) were enrolled in this study. According to receiver operating characteristic (ROC) curve analysis, the optimal RDW cutoff value for predicting mortality was 15.45% (area under the curve 0.913, P < 0.001). A total of 28 patients (17.8%) died postoperatively; of these, 89.3% had RDW value >15.45%. Binary regression analysis showed that aging, multiple valvular involved, valvular vegetation formation, pulmonary hypertension, and high RDW are strong predictors of postoperative death. Multiple regression analysis revealed that high RDW value was independent predictors of postoperative mortality in patients with IE (ß: 3.704, 95% confidence interval (95%CI): 2.729-604.692, P < 0.05).IE has a high inhospital mortality rate, and increased RDW is an independent predictor of postoperative death in these patients.


Asunto(s)
Endocarditis/sangre , Índices de Eritrocitos , Adulto , China/epidemiología , Endocarditis/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
20.
Nanotechnology ; 30(22): 222001, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30743250

RESUMEN

The design and controlled synthesis of two-dimensional (2D) nanomaterials have been widely studied because the properties and functions of nanomaterials are highly dependent on their sizes, shapes, and dimensionalities. For instance, 2D metal nanosheets (2DMNSs) have attracted a significant amount of attention owing to their interesting properties, which are absent in corresponding bulk counterparts, and they have been confirmed to have potential applications in electrocatalysis, optics, and biomedicine. However, because of the close-packed structures of metals, the large-scale fabrication of 2DMNSs is challenging. In this review, we have outlined the research progress in the field of 2DMNSs, including the typical synthesis approaches and newly developed methods, as well as promising applications of the materials reported in recent years. Moreover, some preliminary and promising strategies to further improve the properties of 2DMNSs and some insights for the development of the field have been included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA