Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783584

RESUMEN

Euphrates poplar (Populus euphratica Oliv.) constitutes about 61% of the global poplar population, thriving in arid regions of western China (Wu et al. 2023). It plays a crucial role in maintaining ecological balance, securing oasis agriculture, and driving socio-economic progress in the region. During a June 2023 investigation in the P. euphratica forest within the Hotan area of Xinjiang (37°20'21″N, 79°21'15″E), over 12% of the P. euphratica trees displayed branch withering symptoms. The affected trees exhibited cracked bark, trunk decay, darkened coloration, and an eventual black coal-smoke-like appearance. Fungal spores were notably present beneath peeling bark on trunks and main branches. The deep ulcers extended longitudinally into the cambium, leading to tree mortality. In some cases, lateral spread into the sapwood caused dark discoloration of vascular tissue. Twenty diseased branches from various locations were collected and 5-10 mm2 lesions were excised from the edges. These were then surface-disinfected with 75% ethanol for 30 s and 1% sodium hypochlorite for 2 min. After three rinses with sterile distilled water, excess moisture was removed using sterile filter paper, followed by incubating the samples on Potato Dextrose Agar (PDA) medium. Cultures were subsequently grown at 25 ± 1 ℃ under a 12-h photoperiod for three days, thus resulting in the isolation of 25 fungal strains with similar morphological characteristics. All strains displayed rapid colony growth (40 mm/d). On PDA medium, the mycelium initially presented as a white colony, transitioning to an olive-green to greyish color, finally turning dark-grey to black. Colonies generated mycelia that disintegrated into 0- to 1-septate, cylindrical to round, hyaline to brown arthroconidia, occurring singly or in arthric chains, averaging 8.9 ± 2.1 µm × 4.9 ± 1.3 µm, with a length/width ratio of 1.79. Based on morphological characteristics, the isolates were identified as Neoscytalidium dimidiatum (Penz.) Crous & Slippers (Crous et al. 2006). Molecular characterization involved amplifying the partial internal transcribed spacer (ITS) region and translation elongation factor 1-α (TEF1-α) and ß-tubulin (TUB2) genes using ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), and BT2a/BT2b primers (Glass and Donaldson 1995). Sequences, available in GenBank (ITS: PP033096, PP033097, PP033098; TUB2: PP032812, PP032813, PP032814; TEF1-α: PP032815, PP032816, PP032817), exhibited 99-100% identity with the epitype N. dimidiatum Arp2-D (ITS, MK813852; TUB2, MK816354; TEF1-α, MK816355). Phylogenetic analysis, employing maximum likelihood and Bayesian inference on concatenated ITS-TEF1-TUB, was constructed using IQ-Tree and MrBayes3.2.7, revealing isolates clustering within the N. dimidiatum clade. Three isolates (HY01, HY02, and HY05) from different collection points were chosen for pathogenic investigation. Pathogenicity testing on one-year-old healthy P. euphratica seedlings involved removing a 4-mm-diameter bark plug using a cork borer. A 3-day-cultured N. dimidiatum plug of the same size was inoculated, with a blank PDA as control. The wound was covered with moistened sterile absorbent cotton and finally sealed with parafilm for three days. Experiments were repeated thrice. Symptoms manifested by day 2 post-inoculation, resembling the original symptoms by day 7. In the control group, plants remained healthy. N. dimidiatum was exclusively re-isolated from lesions on inoculated stems, confirmed as N. dimidiatum through morphological characteristics and sequence analysis, aligning with Koch's hypothesis. To our knowledge, this is the first report of N. dimidiatum inducing stem canker on P. euphratica in China. This pathogen has been reported on many tree hosts including citrus (Alananbeh et al., 2020), common fig (Güney et al., 2022), dragon fruit (Salunkhe et al., 2023), and Almond (Nouri et al., 2018). Therefore our findings will serve as a warning for authorities to a potential threat in China's P. euphratica and other trees cultivation. Thus, further epidemiological studies are essential for devising effective management strategies.

2.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339686

RESUMEN

Micro direct methanol fuel cells (µDMFCs) are a promising power source for microelectronic devices and systems. As the operating state and performance of a µDMFC is generally determined by both electrochemical polarization and methanol crossover, it is important to monitor the methanol concentration in µDMFCs. Here, we design and fabricate a microwave sensor and integrate it with a µDMFC for the online detection of methanol concentration in a nonintrusive way. The sensing area is set at the bottom of the anode chamber of a µDMFC which exhibits a maximum output power density of 28.8 mW cm-2 at 30 °C. With a square ring structure, the dual-mode microwave sensor shows a sensitivity of 9.5 MHz mol-1 L. Furthermore, the importance of methanol concentration monitoring is demonstrated in the long term. A relatively smooth methanol decline curve was obtained, which indicated a normal and stable operating status of the µDMFC. Derived from real-time recording data, fuel utilization was additionally calculated as 28.5%.

3.
Opt Lett ; 48(7): 1902-1905, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221795

RESUMEN

Image edge processing has widespread adoption in a variety of scientific and industrial scenarios. To date, implementations of image edge processing have mostly been done electronically, but there are still difficulties to achieve real-time, high-throughput, and low power consumption image edge processing. The advantages of optical analog computing include low power consumption, fast transmission speed, and high parallel processing capability, and optical analog differentiators make this process possible. However, the proposed analog differentiators can hardly meet the requirements of broadband, polarization insensitive, high contrast, and high efficiency at the same time. Moreover, they are limited to one-dimensional differentiation or work in reflection mode. To be better compatible with two-dimensional image processing or image recognition systems, two-dimensional optical differentiators that integrate the above advantages are urgently needed. In this Letter, a two-dimensional analog optical differentiator with edge detection operating in transmission mode is proposed. It can cover the visible band, is polarization uncorrelated, and has a resolution that reaches 1.7 µm. The efficiency of the metasurface is higher than 88%.

4.
Proc Natl Acad Sci U S A ; 117(5): 2288-2293, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964821

RESUMEN

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm-1 for 2.5-3.9-µm-long NWs reveal a series of resonances due to the Fabry-Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to the m = 3 and m = 4 Fabry-Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry-Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

5.
Entropy (Basel) ; 24(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35626481

RESUMEN

The Age of Information (AoI) measures the freshness of information and is a critic performance metric for time-sensitive applications. In this paper, we consider a radio frequency energy-harvesting cognitive radio network, where the secondary user harvests energy from the primary users' transmissions and opportunistically accesses the primary users' licensed spectrum to deliver the status-update data pack. We aim to minimize the AoI subject to the energy causality and spectrum constraints by optimizing the sensing and update decisions. We formulate the AoI minimization problem as a partially observable Markov decision process and solve it via dynamic programming. Simulation results verify that our proposed policy is significantly superior to the myopic policy under different parameter settings.

6.
Ecol Lett ; 24(11): 2350-2363, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34409716

RESUMEN

Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.


Asunto(s)
Sequías , Agua , Hábitos , Hojas de la Planta , Árboles
7.
Ann Surg Oncol ; 28(4): 2337-2345, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32935266

RESUMEN

BACKGROUND: Intraperitoneal hyperthermic perfusion (IPHP) has achieved positive results in treating various abdominal cancers but infrequently reported in resectable pancreatic head cancer. This study was designed to explore the safety and efficacy of pancreaticoduodenectomy plus intraperitoneal hyperthermic perfusion (PD + IPHP) in patients with pancreatic cancer. METHODS: Data of pancreatic cancer patients undergoing pancreaticoduodenectomy were retrospectively analyzed, including PD + IPHP (n = 28) and PD group (n = 29). IPHP was performed during surgery, on postoperative day (POD) 2, and POD 4 with normal saline as the perfusion solution. Complications and overall survival of these patients were observed and recorded. RESULTS: There was no significant difference in the incidence of major postoperative complications between PD + IPHP group and PD group. The median overall survival (OS) time of the PD + IPHP group was 19.0 months, the 1-year survival rate was 82.35%, and the 2-year survival rate was 49.41%. The median OS time of the PD group was 13.0 months, the 1-year survival rate was 51.00%, and the 2-year survival rate was 27.33% (Log-rank, P = 0.030; Breslow, P = 0.039). Cox proportional risk model showed that IPHP was an independent factor to improve survival outcomes of these patients (hazard ratio = 0.363, 95% confidence interval: 0.14-0.94; P = 0.038). CONCLUSIONS: Intraperitoneal hyperthermic perfusion significantly improves the survival outcomes of pancreatic head cancer patients undergoing PD and does not bring extra risks of complications.


Asunto(s)
Hipertermia Inducida , Neoplasias Pancreáticas , Neoplasias Gástricas , Estudios de Cohortes , Terapia Combinada , Humanos , Neoplasias Pancreáticas/cirugía , Pancreaticoduodenectomía , Perfusión , Estudios Retrospectivos , Neoplasias Gástricas/cirugía
8.
J Chem Phys ; 155(21): 214202, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879676

RESUMEN

Infrared photothermal heterodyne imaging (IR-PHI) is an all-optical table top approach that enables super-resolution mid-infrared microscopy and spectroscopy. The underlying principle behind IR-PHI is the detection of photothermal changes to specimens induced by their absorption of infrared radiation. Because detection of resulting refractive index and scattering cross section changes is done using a visible (probe) laser, IR-PHI exhibits a spatial resolution of ∼300 nm. This is significantly below the mid-infrared diffraction limit and is unlike conventional infrared absorption microscopy where spatial resolution is of order ∼5µm. Despite having achieved mid-infrared super-resolution, IR-PHI's spatial resolution is ultimately limited by the visible probe laser's diffraction limit. This hinders immediate application to studying samples residing in spatially congested environments. To circumvent this, we demonstrate further enhancements to IR-PHI's spatial resolution using a deep learning network that addresses the Abbe diffraction limit as well as background artifacts, introduced by experimental raster scanning. What results is a twofold improvement in feature resolution from 300 to ∼150 nm.


Asunto(s)
Rayos Infrarrojos , Microscopía , Rayos Láser
9.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34960292

RESUMEN

This paper investigates the secrecy communication in an underlay cognitive radio (CR) networks with one primary user (PU) as well as multiple PUs, where the radio frequency (RF) energy-harvesting secondary user (SU) transmits the confidential information to the destination in the presence of a potential eavesdropper. We introduce a RF energy-harvesting secondary jammer (SJ) to secure the SU transmissions. The system works in time slots, where each time slot is divided into the energy transfer (ET) phase and the information transfer (IT) phase. In ET phase, the SU and SJ capture energy from the PU transmissions; in the IT phase, the SU uses the harvested energy to transmit information to the destination without causing the harmful interference to the PU transmissions, while the SJ utilizes the captured energy to generate jamming signals to the eavesdropper to secure the SU transmissions. We aim to maximize the secrecy rate for SU transmissionsby jointly optimizing the time allocation between ET phase and IT phase and the transmit power allocation at the SU and SJ. We first formulate the secrecy rate maximization as non-convex optimization problems. Then, we propose efficient nested form algorithms for the non-convex problems. In the outer layer, we obtain the optimal time allocation by the one dimension search method. In the inner layer, we obtain the optimal transmit power allocation by the DC programming, where the Lagrange duality method is employed to solve the convex approximation problem. Simulation results verify that the proposed schemes essentially improve the secrecy rate of the secondary network as compared to the benchmark schemes.


Asunto(s)
Redes de Comunicación de Computadores , Confidencialidad , Algoritmos , Simulación por Computador , Transferencia de Energía
10.
Chem Res Toxicol ; 33(6): 1442-1448, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32083470

RESUMEN

Pesticide biotransformation, especially by cytochrome P450 enzymes (CYPs), may produce metabolites with substantially altered toxicological and physicochemical profiles, which has drawn great attention as a basis for environmental risk assessment. CYPs are active in the metabolism of various reactions of pesticides, and there are potentially different short-lived oxidant species in CYPs (Compound I vs Compound 0), which make elucidating their biotransformation mechanism challenging. To facilitate this task, we performed density functional theory (DFT) calculations to explore the puzzling bifurcation pathways of dieldrin by CYPs. The results show that the two-oxidant mechanism does not work, while the bifurcation pathways are within the mechanistic framework of a two-state reactivity of Compound I. Specifically, 9-hydroxy-dieldrin as a hydroxylation product is formed via H-abstraction and essentially barrierless C-9 alkyl radical rebound in the doublet state; while 3-ketone-dieldrin as a dechlorination product is formed via H-abstraction, C-9 alkyl radical cyclization, and C-3 cyclized radical rebound in the quartet state followed by HCl elimination, originating from a significant barrier for C-9 alkyl radical rebound in the quartet state to provide this radical sufficient lifetime for cyclization. Thus, the ratio [dechlorination]/[hydroxylation] can be estimated as 1:35, consistent with the experimental findings. We envision that application of computational chemistry has a great potential in revealing the complex biotransformation mechanisms of pesticides.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Dieldrín/metabolismo , Contaminantes Ambientales/metabolismo , Plaguicidas/metabolismo , Biotransformación , Ciclización , Hidroxilación
11.
Environ Sci Technol ; 54(5): 2902-2912, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31967796

RESUMEN

Phenols are ubiquitous environmental pollutants, whose biotransformation involving phenol coupling catalyzed by cytochromes P450 may produce more lipophilic and toxic metabolites. Density functional theory (DFT) computations were performed to explore the debated phenol-coupling mechanisms, taking triclosan as a model substrate. We find that a diradical pathway facilitated by compound I and protonated compound II of P450 is favored vs alternative radical addition or electron-transfer mechanisms. The identified diradical coupling resembles a "two-state reactivity" from compound I characterized by significantly high rebound barriers of the phenoxy radicals, which can be formulated into three equations for calculating the ratio [coupling]/[hydroxylation]. A higher barrier for rebound than for H-abstraction in high-spin triclosan can facilitate the phenoxy radical dissociation and thus enable phenol coupling, while H-abstraction/radical rebound causing phenol hydroxylation via minor rebound barriers mostly occurs via the low-spin state. Therefore, oxidation of triclosan by P450 fits the first equation with a ratio [coupling]/[hydroxylation] of 1:4, consistent with experimental data indicating different extents of triclosan coupling (6-40%). The high rebound barrier of phenoxy radicals, as a key for the mechanistic identification of phenol coupling vs hydroxylation, originates from their weak electron donor ability due to spin aromatic delocalization. We envision that the revealed mechanism can be extended to the cross-coupling reactions between different phenolic pollutants, and the coupling reactions of several other aromatic pollutants, to infer unknown metabolites.


Asunto(s)
Contaminantes Ambientales , Fenol , Biotransformación , Hidroxilación , Fenoles
13.
J Surg Oncol ; 120(8): 1379-1385, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31691290

RESUMEN

BACKGROUND: Open surgery for hilar cholangiocarcinoma (HCCA) has already been widely reported and analyzed. However, the laparoscopic technique for treating HCCA remains controversial because of the lack of radicality and poor assessment of the resectability of hilar structures without direct palpation. The aim of this study was to provide detailed surgical procedures and photographs of this technically demanding operation, describe our experience in assessing resectability before and during surgery, and confirm the radicality of laparoscopic resection of Bismuth type III and IV HCCA. METHODS: From November 2016 to November 2018, nine patients received laparoscopic resection of Bismuth type III or IV HCCA in our department. RESULTS: Laparoscopic right hepatectomy was performed in four patients, and laparoscopic left hepatectomy was performed in five patients. Negative margins were achieved in all patients. Complications were found in two (22.22%) patients, with bile leakage and hepatic insufficiency each in one patient. The patient developing hepatic insufficiency had persistent and ongoing liver failure and finally expired. CONCLUSION: The radicality of laparoscopic resection for Bismuth type III and IV HCCA can be technically improved through extended lymphadenectomy, visual assessment of hilar structures, and frozen section techniques.


Asunto(s)
Neoplasias de los Conductos Biliares/cirugía , Hepatectomía/métodos , Tumor de Klatskin/cirugía , Laparoscopía/métodos , Pérdida de Sangre Quirúrgica , Transfusión Sanguínea , Transfusión de Eritrocitos , Femenino , Humanos , Tumor de Klatskin/patología , Masculino , Persona de Mediana Edad , Tempo Operativo , Selección de Paciente , Complicaciones Posoperatorias
14.
J Immunol ; 191(11): 5583-93, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24184560

RESUMEN

Foxn1 is essential for thymic organogenesis and T lymphopoiesis. Whereas reduced Foxn1 expression results in a decline in T lymphopoiesis, overexpression of Foxn1 in the thymus of a transgenic mouse model (Foxn1Tg) attenuates the age-associated decline in T lymphopoiesis. T lymphopoiesis begins with early T cell progenitors (ETP), derived from multipotent progenitors (MPP) in the bone marrow (BM). A decline in MPP and ETP numbers with age is thought to contribute to reduced T lymphopoiesis. Previously, we showed that reduced ETP number with age is attenuated in Foxn1 transgenic (Tg); whether the effect is initiated in the BM with MPP is not known. In this study, we report that Foxn1 is expressed in wild-type BM and overexpressed in Foxn1Tg. With age, the number of MPP in Foxn1Tg was not reduced, and Foxn1Tg also have a larger pool of hematopoietic stem cells. Furthermore, the Foxn1Tg BM is more efficient in generating MPP. In contrast to MPP, common lymphoid progenitors and B lineage cell numbers were significantly lower in both young and aged Foxn1Tg compared with wild type. We identified a novel population of lineage(neg/low), CD45(pos) EpCAM(pos), SCA1(pos), CD117(neg), CD138(neg), MHCII(neg) cells as Foxn1-expressing BM cells that also express Delta-like 4. Thus, Foxn1 affects both T lymphopoiesis and hematopoiesis, and the Foxn1 BM niche may function in skewing MPP development toward T lineage progenitors.


Asunto(s)
Envejecimiento/inmunología , Linfocitos B/inmunología , Factores de Transcripción Forkhead/metabolismo , Células Progenitoras Linfoides/inmunología , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , Médula Ósea/inmunología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Inmunofenotipificación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Recuento de Linfocitos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nicho de Células Madre/inmunología , Transgenes/genética
15.
Nat Genet ; 38(11): 1310-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033621

RESUMEN

The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells, may have multiple functions, including acting as a mechanosensor in bone (re)modeling. Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes and, when deleted in mice, results in a hypomineralized bone phenotype. We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P(i)) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Minerales/metabolismo , Osteocitos/fisiología , Osteomalacia/genética , Fosfoproteínas/genética , Raquitismo/genética , Adulto , Animales , Huesos/patología , Calcificación Fisiológica/genética , Calcificación Fisiológica/fisiología , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/patología , Osteomalacia/sangre , Osteomalacia/patología , Fosfatos/metabolismo , Raquitismo/sangre , Raquitismo/patología
16.
Mycorrhiza ; 24(8): 595-602, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24743902

RESUMEN

Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.


Asunto(s)
Hordeum/microbiología , Hordeum/fisiología , Micorrizas/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Biomasa , Fósforo , Hojas de la Planta/fisiología , Transpiración de Plantas , Simbiosis
17.
ScientificWorldJournal ; 2014: 148686, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25110725

RESUMEN

Though label propagation algorithm (LPA) is one of the fastest algorithms for community detection in complex networks, the problem of trivial solutions frequently occurring in the algorithm affects its performance. We propose a label propagation algorithm with prediction of percolation transition (LPAp). After analyzing the reason for multiple solutions of LPA, by transforming the process of community detection into network construction process, a trivial solution in label propagation is considered as a giant component in the percolation transition. We add a prediction process of percolation transition in label propagation to delay the occurrence of trivial solutions, which makes small communities easier to be found. We also give an incomplete update condition which considers both neighbor purity and the contribution of small degree vertices to community detection to reduce the computation time of LPAp. Numerical tests are conducted. Experimental results on synthetic networks and real-world networks show that the LPAp is more accurate, more sensitive to small community, and has the ability to identify a single community structure. Moreover, LPAp with the incomplete update process can use less computation time than LPA, nearly without modularity loss.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
18.
Plant Divers ; 46(2): 265-273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38807905

RESUMEN

To determine the invasiveness of invasive plants, many studies have compared photosynthetic traits or strategies between invasive and native species. However, few studies have compared the photosynthetic dynamics between invasive and native species during light fluctuations. We compared photosynthetic induction, relaxation dynamics and leaf traits between the invasive species, Tithonia diversifolia and two native species, Clerodendrum bungei and Blumea balsamifera, in full-sun and shady habitats. The photosynthetic dynamics and leaf traits differed among species. T. diversifolia showed a slower induction speed and stomatal opening response but had higher average intrinsic water-use efficiency than the two native species in full-sun habitats. Thus, the slow induction response may be attributed to the longer stomatal length in T. diversifolia. Habitat had a significant effect on photosynthetic dynamics in T. diversifolia and B. balsamifera but not in C. bungei. In shady habitat, T. diversifolia had a faster photosynthetic induction response than in full-sun habitat, leading to a higher average stomatal conductance during photosynthetic induction in T. diversifolia than in the two native species. In contrast, B. balsamifera had a larger stomatal length and slower photosynthetic induction and relaxation response in shady habitat than in full-sun habitat, resulting in higher carbon gain during photosynthetic relaxation. Nevertheless, in both habitats, T. diversifolia had an overall higher carbon gain during light fluctuations than the two native species. Our results indicated that T. diversifolia can adopt more effective response strategies under fluctuating light environments to maximize carbon gain, which may contribute to its successful invasion.

19.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38102768

RESUMEN

Leaf nutrient resorption and drought resistance are crucial for the growth and survival of plants. However, our understanding of the relationships between leaf nutrient resorption and plant drought resistance is still limited. In this study, we investigated the nitrogen and phosphorus resorption efficiencies (NRE and PRE), leaf structural traits, leaf osmotic potential at full hydration (Ψosm), xylem water potential at 50% loss of xylem-specific hydraulic conductivity (P50) and seasonal minimum water potential (Ψmin) for 18 shrub and tree species in a semiarid savanna ecosystem, in Southwest China. Our results showed that NRE and PRE exhibited trade-off against drought resistance traits (Ψosm and P50) across woody species. Moreover, this relationship was modulated by leaf structural investment. Species with low structural investment (e.g., leaf mass per area, leaf dry mass content and leaf construction cost [LCC]) tend to have high NRE and PRE, while those with high LCCs show high drought resistance, showing more negative Ψosm and P50.These results indicate that species with a lower leaf structural investment may have a greater need to recycle their nutrients, thus exhibiting higher nutrient resorption efficiencies, and vice versa. In conclusion, nutrient resorption efficiency may be a crucial adaptation strategy for coexisting plants in semiarid ecosystems, highlighting the importance of understanding the complex relationships between nutrient cycling and plant survival strategies.


Asunto(s)
Ecosistema , Pradera , Resistencia a la Sequía , Nitrógeno/análisis , Fósforo/análisis , Plantas , Árboles , China , Agua , Hojas de la Planta/química
20.
Neural Netw ; 172: 106075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278092

RESUMEN

The SSVEP-based paradigm serves as a prevalent approach in the realm of brain-computer interface (BCI). However, the processing of multi-channel electroencephalogram (EEG) data introduces challenges due to its non-Euclidean characteristic, necessitating methodologies that account for inter-channel topological relations. In this paper, we introduce the Dynamic Decomposition Graph Convolutional Neural Network (DDGCNN) designed for the classification of SSVEP EEG signals. Our approach incorporates layerwise dynamic graphs to address the oversmoothing issue in Graph Convolutional Networks (GCNs), employing a dense connection mechanism to mitigate the gradient vanishing problem. Furthermore, we enhance the traditional linear transformation inherent in GCNs with graph dynamic fusion, thereby elevating feature extraction and adaptive aggregation capabilities. Our experimental results demonstrate the effectiveness of proposed approach in learning and extracting features from EEG topological structure. The results shown that DDGCNN outperforms other state-of-the-art (SOTA) algorithms reported on two datasets (Dataset 1: 54 subjects, 4 targets, 2 sessions; Dataset 2: 35 subjects, 40 targets). Additionally, we showcase the implementation of DDGCNN in the context of synchronized BCI robotic fish control. This work represents a significant advancement in the field of EEG signal processing for SSVEP-based BCIs. Our proposed method processes SSVEP time domain signals directly as an end-to-end system, making it easy to deploy. The code is available at https://github.com/zshubin/DDGCNN.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Potenciales Evocados Visuales , Redes Neurales de la Computación , Algoritmos , Electroencefalografía/métodos , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA