Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
2.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569517

RESUMEN

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Asunto(s)
ADN/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Genes Sintéticos , Ingeniería Genética/métodos , Genoma , Sistemas CRISPR-Cas , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/genética , Esferoplastos/metabolismo
3.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759624

RESUMEN

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Asunto(s)
Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Factor II del Crecimiento Similar a la Insulina , ARN Largo no Codificante , Factores de Transcripción SOXB1 , Animales , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Región de Control de Posición/genética , Impresión Genómica , Genómica/métodos
4.
Mol Cell ; 83(23): 4424-4437.e5, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37944526

RESUMEN

Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.


Asunto(s)
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromosomas/genética , Genoma Fúngico , Biología Sintética/métodos
5.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
6.
Nature ; 623(7986): 423-431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914927

RESUMEN

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Ingeniería Genética , Genoma , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Alelos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virología , ADN/genética , Farmacorresistencia Microbiana/genética , Ingeniería Genética/métodos , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Proteína p53 Supresora de Tumor/genética
7.
Proc Natl Acad Sci U S A ; 120(9): e2219126120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821584

RESUMEN

The nucleolus is the most prominent membraneless compartment within the nucleus-dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations-where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location-the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This "megablock" rDNA engineering was performed in a fused-karyotype strain of Saccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to the CEN, in that the locus that is CEN-distal undergoes size reduction at a higher frequency compared to the CEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogous cis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability.


Asunto(s)
Nucléolo Celular , Telómero , ADN Ribosómico/genética , Nucléolo Celular/metabolismo , Telómero/metabolismo , Ciclo Celular , Saccharomyces cerevisiae/metabolismo , ARN Ribosómico/metabolismo
8.
Apoptosis ; 29(3-4): 412-423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38001343

RESUMEN

Ferroptosis, a nonapoptotic form of cell death marked by iron-dependent peroxidation of phospholipids, is associated with the occurrence and progression of tumors. Erastin, a selective inhibitor of the cystine/glutamate transporter system Xc-, can induce the ferroptosis of cancer cells. Multiple myeloma (MM) has been reported to be insensitive to erastin-induced ferroptosis. However, we found the erastin sensitivity of different MM cells varied widely. Specifically, SLC7A11 abundance determined the sensitivity of MM cells to erastin-induced ferroptosis. MM cells expressing a high SLC7A11 level were more sensitive to erastin-induced ferroptosis than cells expressing a low level of SLC7A11. Moreover, the expression of SLC7A11 gradually increased with the progression of plasma cell dyscrasias. Survival analysis indicated that high levels of SLC7A11 predicted a poor prognosis for MM patients. Knocking down SLC7A11 expression significantly inhibited the proliferation of MM cells and induced ferroptotic cell death. Additionally, we revealed that the long noncoding RNA (lncRNA) SLC7A11-AS1 was a critical regulatory factor of SLC7A11 expression. SLC7A11-AS1 overexpression diminished SLC7A11 levels, leading to the ferroptosis of MM cells. In summary, our data show that heterogeneous SLC7A11 expression affects MM cell sensitivity to ferroptosis, providing a theoretical basis for improving the clinical treatment of MM.


Asunto(s)
Ferroptosis , Mieloma Múltiple , Piperazinas , Humanos , Apoptosis/genética , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ferroptosis/genética , Muerte Celular , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo
9.
Breast Cancer Res Treat ; 206(1): 105-118, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704773

RESUMEN

BACKGROUND: Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored. METHODS: To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood. RESULTS: Through RNA sequencing, we identified two distinct DCIS subgroups: "immune hot" and "immune cold". The "immune hot" subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with "immune cold" samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with "immune cold" cases generally showing lower levels of methylation. CONCLUSION: In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Adulto , Mutación , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Persona de Mediana Edad , Metilación de ADN , Adulto Joven , Genómica/métodos , Pronóstico , Exoma/genética , Multiómica
10.
Microb Pathog ; 192: 106719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810768

RESUMEN

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Polisacáridos , Virus de la Gastroenteritis Transmisible , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Células RAW 264.7 , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Antivirales/farmacología , Rizoma/química , Interleucina-1beta/metabolismo , Peso Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Línea Celular , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Espectroscopía Infrarroja por Transformada de Fourier , Monosacáridos , Óxido Nítrico/metabolismo , Factores Inmunológicos/farmacología
11.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783346

RESUMEN

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Carnitina O-Palmitoiltransferasa , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Humanos , Animales , Línea Celular Tumoral , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Metabolismo Energético/genética , Regulación hacia Arriba , Progresión de la Enfermedad , Proliferación Celular , Ratones Desnudos , Ratones , Femenino , Masculino , Fase S , Ratones Endogámicos BALB C
12.
J Nat Prod ; 87(2): 371-380, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38301035

RESUMEN

Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I-N (1, 2, 5-10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1-10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 µg mL-1).


Asunto(s)
Streptomyces , Streptomyces/genética , Streptomyces/química , Antibacterianos/farmacología , Espectroscopía de Resonancia Magnética , Ácido Salicílico , Tiazoles
13.
Cardiol Young ; : 1-8, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456293

RESUMEN

Studies have shown that genetic factors play an important role in CHD's development. The mutations in GATA4 and CITED2 genes result in the failure of the heart to develop normally, thereby leading to septal defects. The present study investigated the underlying molecular aetiology of patients with cardiac septation defects from Xinjiang. We investigated variants of the GATA4 and CITED2 gene coding regions in 172 patients with cardiac septation defects by sequencing. Healthy controls (n = 200) were included. Three heterozygous variations (p.V380M, p.P394T, and p.P407Q) of the GATA4 gene were identified in three patients. p.V380M was discovered in a patient with atrial septal defect. p.P394T was noted in a patient with atrial septal defect. p.V380M and p.P407Q of the GATA4 gene were detected in one patient with ventricular septal defect. A novel homozygous variation (p. Sl92G) of the CITED2 gene was found in one patient with ventricular septal defect. Other patients and healthy individuals were normal. The limited prevalence of genetic variations observed in individuals with cardiac septal defects from Xinjiang provides evidence in favour of the hypothesis that CHD is a polygenic hereditary disorder. It is plausible that mutations in the GATA4 and CITED2 genes could potentially underlie the occurrence of idiopathic CHD in affected patients.

14.
J Asian Nat Prod Res ; 26(4): 534-540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37639617

RESUMEN

Based on the One Strain-Many Compounds (OSMAC) strategy, the secondary metabolites of Phomopsis lithocarpus FS508 were investigated. As a result, a new secondary metabolite, 4-methoxy-3-[4-(acetyloxy)-3-methyl-2-butenyl]benzoic acid (1) as well as eleven known compounds were isolated from the fermentation product of the strain FS508. Their structures were determined by NMR, IR, UV, and MS spectroscopic data analyses. All the isolated compounds were evaluated for cytotoxic and anti-inflammatory activities. Among them, compounds 3 and 9 displayed potent cytotoxicity against HepG-2 cell line, and compounds 2, 3 and 12 showed significant anti-inflammatory activities.


Asunto(s)
Antineoplásicos , Ascomicetos , Phomopsis , Ascomicetos/química , Línea Celular Tumoral , Antineoplásicos/química , Antiinflamatorios/farmacología , Estructura Molecular
15.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928267

RESUMEN

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Asunto(s)
Receptores de Vasopresinas , Espermatogénesis , Testículo , Vasotocina , Pez Cebra , Animales , Pez Cebra/metabolismo , Masculino , Vasotocina/metabolismo , Vasotocina/farmacología , Testículo/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Espermatozoides/metabolismo , Proliferación Celular , Espermatogonias/metabolismo , Espermatogonias/citología
16.
J Environ Manage ; 352: 120139, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38262287

RESUMEN

Ecological restoration project is the premise to realize the value of ecological products. The current ecological product value accounting and ecological restoration project benefit evaluation methods are interlinked. The benefit evaluation of ecological restoration projects can not only analyze the completion of ecological restoration projects, but also quantify the impact of externalities on regional development. This study proposes a hypothesis that the benefit evaluation results of ecological restoration projects can affect the realization of urban ecological product value. In order to verify the above hypothesis, this study designed a benefit evaluation framework to evaluate the economic benefits, ecological benefits and project costs of ecological restoration projects. In this study, the benefit evaluation results are divided into three cases to calculate the benefit-cost ratio under different conditions. The three cases are only considering the direct economic benefits (DEB), considering the indirect economic benefits (TEB) and considering the comprehensive benefits (AEB). Taking Jiangyin City of Jiangsu Province as an example, the benefit evaluation of water source protection project in Jiangyin City is carried out. The results show that the benefit-cost ratios in the three cases are 6.68,7.60 and 9.36, respectively. The results show that the benefit-cost ratio is different in different benefit situations. Therefore, when discussing the realization path of ecological product value in ecological restoration areas, it is also necessary to discuss the situation. The evaluation system can provide reference for the benefit evaluation of ecological restoration projects, and also provide data and theoretical support for the realization of regional ecological product value.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Análisis Costo-Beneficio , Ciudades , China , Conservación de los Recursos Naturales/métodos
17.
J Sci Food Agric ; 104(9): 5139-5148, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38284624

RESUMEN

BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), ß-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO). RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by ß and ß'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO. CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.


Asunto(s)
Aceite de Coco , Cocos , Compuestos Orgánicos , Compuestos Orgánicos/química , Aceite de Coco/química , Cocos/química , Oxidación-Reducción , Glicéridos/química , Geles/química , Sitoesteroles/química , Antioxidantes/química , Celulosa/química , Fenilpropionatos
18.
Carcinogenesis ; 44(6): 451-462, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37279554

RESUMEN

Epidermal growth factor receptor (EGFR) is one of the most common amplified and overexpressed oncogenes in esophageal squamous cell carcinoma (ESCC), while the clinical efficacy of EGFR-targeted therapy in ESCC is dismal. Here, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an Wee1 inhibitor (AZD1775) in ESCC. We found that the mRNA and protein expression of EGFR and Wee1 were positively correlated in ESCC. Nimotuzumab-AZD1775 co-treatment inhibited tumor growth in PDX models with different drug susceptibility. Transcriptome sequencing and mass spectrometry analysis indicated that higher sensitive models showed enrichment of the PI3K/Akt or MAPK signaling pathway in Nimotuzumab-AZD1775 group compared with control group. In vitro experiments showed that the combination further inhibit PI3K/Akt and MAPK pathways compared to their monotherapy as indicated by downregulation of pAKT, pS6, pMEK, pErk and p-p38 MAPK. Furthermore, AZD1775 potentiated Nimotuzumab's antitumor effect through inducing apoptosis. Meanwhile, the bioinformatics analysis suggests the POLR2A might be candidate molecule of EGFR/Wee1 downstream. In conclusion, our work uncovers that EGFR-mAb Nimotuzumab combined with Wee1 inhibitor AZD1775 elicited potentiated anticancer activity against ESCC cell line and PDXs partially through PI3K/Akt and MAPK pathways blockade. These preclinical data raise the promising that ESCC patients may benefit from dual target EGFR and Wee1.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Fosfatidilinositol 3-Quinasas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Línea Celular Tumoral , Proliferación Celular , Apoptosis
19.
Br J Cancer ; 128(6): 1086-1094, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36593359

RESUMEN

BACKGROUND: Dysregulation of alternative splicing (AS) triggers many tumours, understanding the roles of splicing events during tumorigenesis would open new avenues for therapies and prognosis in multiple myeloma (MM). METHODS: Molecular, genetic, bioinformatic and statistic approaches are used to determine the mechanism of the candidate splicing factor (SF) in myeloma cell lines, myeloma xenograft models and MM patient samples. RESULTS: GSEA reveals a significant difference in the expression pattern of the alternative splicing pathway genes, notably enriched in MM patients. Upregulation of the splicing factor SRSF1 is observed in the progression of plasma cell dyscrasias and predicts MM patients' poor prognosis. The c-indices of the Cox model indicated that SRSF1 improved the prognostic stratification of MM patients. Moreover, SRSF1 knockdown exerts a broad anti-myeloma activity in vitro and in vivo. The upregulation of SRSF1 is caused by the transcription factor YY1, which also functions as an oncogene in myeloma cells. Through RNA-Seq, we systematically verify that SRSF1 promotes the tumorigenesis of myeloma cells by switching AS events. CONCLUSION: Our results emphasise the importance of AS for promoting tumorigenesis of MM. The candidate SF might be considered as a valuable therapeutic target and a potential prognostic biomarker for MM.


Asunto(s)
Empalme Alternativo , Mieloma Múltiple , Humanos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Transformación Celular Neoplásica , Carcinogénesis
20.
Hum Brain Mapp ; 44(9): 3781-3794, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186095

RESUMEN

The pedunculopontine nucleus (PPN) is a small brainstem structure and has attracted attention as a potentially effective deep brain stimulation (DBS) target for the treatment of Parkinson's disease (PD). However, the in vivo location of PPN remains poorly described and barely visible on conventional structural magnetic resonance (MR) images due to a lack of high spatial resolution and tissue contrast. This study aims to delineate the PPN on a high-resolution (HR) atlas and investigate the visibility of the PPN in individual quantitative susceptibility mapping (QSM) images. We combine a recently constructed Montreal Neurological Institute (MNI) space unbiased QSM atlas (MuSus-100), with an implicit representation-based self-supervised image super-resolution (SR) technique to achieve an atlas with improved spatial resolution. Then guided by a myelin staining histology human brain atlas, we localize and delineate PPN on the atlas with improved resolution. Furthermore, we examine the feasibility of directly identifying the approximate PPN location on the 3.0-T individual QSM MR images. The proposed SR network produces atlas images with four times the higher spatial resolution (from 1 to 0.25 mm isotropic) without a training dataset. The SR process also reduces artifacts and keeps superb image contrast for further delineating small deep brain nuclei, such as PPN. Using the myelin staining histological atlas as guidance, we first identify and annotate the location of PPN on the T1-weighted (T1w)-QSM hybrid MR atlas with improved resolution in the MNI space. Then, we relocate and validate that the optimal targeting site for PPN-DBS is at the middle-to-caudal part of PPN on our atlas. Furthermore, we confirm that the PPN region can be identified in a set of individual QSM images of 10 patients with PD and 10 healthy young adults. The contrast ratios of the PPN to its adjacent structure, namely the medial lemniscus, on images of different modalities indicate that QSM substantially improves the visibility of the PPN both in the atlas and individual images. Our findings indicate that the proposed SR network is an efficient tool for small-size brain nucleus identification. HR QSM is promising for improving the visibility of the PPN. The PPN can be directly identified on the individual QSM images acquired at the 3.0-T MR scanners, facilitating a direct targeting of PPN for DBS surgery.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Tegmental Pedunculopontino , Adulto Joven , Humanos , Imagen por Resonancia Magnética/métodos , Núcleo Tegmental Pedunculopontino/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA