Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438808

RESUMEN

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Asunto(s)
Aprendizaje , Microglía , Calcio , Neuronas GABAérgicas , Interleucina-1beta , Sinapsis
2.
Exp Ther Med ; 27(4): 136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476884

RESUMEN

[This retracts the article DOI: 10.3892/etm.2020.8623.].

3.
Front Pharmacol ; 15: 1412520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895627

RESUMEN

Objective: Browning of white adipocytes is considered an efficient approach to combat obesity. Rosiglitazone induces the thermogenetic program of white adipocytes, but the underlying mechanisms remain elusive. Methods: Expression levels of browning and autophagy flux markers were detected by real-time PCR and immunoblotting. H&E and Oil Red O staining were performed to evaluate the lipid droplets area. Nuclear protein extraction and immunoprecipitation were used to detect the proteins interaction. Results: In this study, we reported that rosiglitazone promoted adipocyte browning and inhibited autophagy. Rapamycin, an autophagy inducer, reversed adipocyte browning induced by rosiglitazone. Autophagy inhibition by rosiglitazone does not prevent mitochondrial clearance, which was considered to promote adipose whitening. Instead, autophagy inhibition increased p62 nuclear translocation and stabilized the PPARγ-RXRα heterodimer, which is an essential transcription factor for adipocyte browning. We found that rosiglitazone activated NRF2 in mature adipocytes. Inhibition of NRF2 by ML385 reversed autophagy inhibition and the pro-browning effect of rosiglitazone. Conclusion: Our study linked autophagy inhibition with rosiglitazone-promoted browning of adipocytes and provided a mechanistic insight into the pharmacological effects of rosiglitazone.

4.
J Agric Food Chem ; 72(29): 16347-16358, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982686

RESUMEN

This study is to investigate the protective effects of Eurotium cristatum intracellular polysaccharides (ECIP) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC). The oral administration of ECIP could downregulate the disease activity index (DAI) and ameliorate the colonic shortening, immune stress, and damage caused by DSS. In addition, ECIP treatment increased the colonic contents of SCFAs including acetic, propionic, and butyric acids in UC mice. Targeted and untargeted metabolic analysis suggested that ECIP dramatically altered the tryptophan metabolism in the feces of UC mice and promoted the conversion of tryptophan into indole metabolites including indolepyruvate and indole-3-acetic acid (IAA) and indolealdehyde (IAId). Moreover, ECIP observably increased the content of colonic IL-22 and stimulated the relative concentration and relative expression of tight junction molecules in mRNA and proteins levels. Conclusively, consumption of ECIP can improve colon damage and its related effects of UC by promoting the production of IAA and IAId to reinforce intestinal barriers.


Asunto(s)
Colitis Ulcerosa , Colon , Ratones Endogámicos C57BL , Polisacáridos , Triptófano , Animales , Ratones , Triptófano/metabolismo , Masculino , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Humanos , Colon/metabolismo , Colon/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/metabolismo , Polisacáridos/química , Polisacáridos/administración & dosificación , Sulfato de Dextran/efectos adversos , Ácidos Indolacéticos/metabolismo , Interleucina-22 , Microbioma Gastrointestinal/efectos de los fármacos
5.
Anal Chim Acta ; 1296: 342344, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401923

RESUMEN

Nanoplastics released from consumer plastic food containers are emerging environmental pollutants and directly ingested as part of the diet. However, quantification methods for nanoplastics are still lacking. Herein, a rapid identification and mass quantification approach was developed for nanoplastics analysis by combining electromagnetic heating with pyrolysis mass spectrometry (Eh-Py-MS). The pyrolysis products directly entered into the MS, which omits the gas phase separation process and shortens the detection time. A compact pyrolysis chamber was used and this increased the sample transfer efficiency and lowered power requirement. The operational parameters were systematically examined. The influence of nanoplastic size, additive, humic acid, and aging on detection was investigated, and it was concluded that environmental factors (humic acid, aging) and plastic properties (size, additives) did not influence the detection. The developed chamber showed that the limit of detection of polystyrene (PS) nanoplastics was 15.72 ng. Several typical food packages were demonstrated with satisfactory recovery rates (87.5-110%) and precision (RSD ≤11.36%). These results suggested that the consumer plastic food containers are a significant source of direct exposure to nanoplastics in humans from the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Sustancias Húmicas/análisis , Embalaje de Alimentos , Pirólisis , Calefacción , Poliestirenos/química , Espectrometría de Masas , Plásticos/análisis , Contaminantes Químicos del Agua/análisis
6.
iScience ; 27(2): 108897, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318382

RESUMEN

Previous studies have focused on the impact of individual RNA modifications on tumor development. This study comprehensively investigated the effects of multiple RNA modifications, including m6A, alternative polyadenylation, pseudouridine, adenosine-to-inosine editing, and uridylation, on gastric cancer (GC). By analyzing 1,946 GC samples from eleven independent cohorts, we identified distinct clusters of RNA modification genes with varying survival rates and immunological characteristics. We assessed the chromatin activity of these RNA modification clusters through regulon enrichment analysis. A prognostic model was developed using Stepwise Regression and Random Survival Forest algorithms and validated in ten independent datasets. Notably, the low-risk group showed a more favorable prognosis and positive response to immune checkpoint blockade therapy. Single-cell RNA sequencing confirmed the abundant expression of signature genes in B cells and plasma cells. Overall, our findings shed light on the potential significance of multiple RNA modifications in GC prognosis, stemness development, and chemotherapy resistance.

7.
Fundam Res ; 4(1): 188-198, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38933843

RESUMEN

Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA