Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Trends Genet ; 40(3): 260-275, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38296708

RESUMEN

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Plantas/genética , Plantas/metabolismo , Silenciador del Gen , Conformación Proteica
2.
Cell ; 145(2): 242-56, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496644

RESUMEN

The shoot apical meristem (SAM) comprises a group of undifferentiated cells that divide to maintain the plant meristem and also give rise to all shoot organs. SAM fate is specified by class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors, which are targets of miR166/165. In Arabidopsis, AGO10 is a critical regulator of SAM maintenance, and here we demonstrate that AGO10 specifically interacts with miR166/165. The association is determined by a distinct structure of the miR166/165 duplex. Deficient loading of miR166 into AGO10 results in a defective SAM. Notably, the miRNA-binding ability of AGO10, but not its catalytic activity, is required for SAM development, and AGO10 has a higher binding affinity for miR166 than does AGO1, a principal contributor to miRNA-mediated silencing. We propose that AGO10 functions as a decoy for miR166/165 to maintain the SAM, preventing their incorporation into AGO1 complexes and the subsequent repression of HD-ZIP III gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , MicroARNs/genética , ARN de Planta/genética , Arabidopsis/genética , Proteínas Argonautas , Brotes de la Planta
3.
Proc Natl Acad Sci U S A ; 120(14): e2216006120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972460

RESUMEN

Intrinsically disordered proteins (IDPs) SAID1/2 are hypothetic dentin sialophosphoprotein-like proteins, but their true functions are unknown. Here, we identified SAID1/2 as negative regulators of SERRATE (SE), a core factor in miRNA biogenesis complex (microprocessor). Loss-of-function double mutants of said1; said2 caused pleiotropic developmental defects and thousands of differentially expressed genes that partially overlapped with those in se. said1; said2 also displayed increased assembly of microprocessor and elevated accumulation of microRNAs (miRNAs). Mechanistically, SAID1/2 promote pre-mRNA processing 4 kinase A-mediated phosphorylation of SE, causing its degradation in vivo. Unexpectedly, SAID1/2 have strong binding affinity to hairpin-structured pri-miRNAs and can sequester them from SE. Moreover, SAID1/2 directly inhibit pri-miRNA processing by microprocessor in vitro. Whereas SAID1/2 did not impact SE subcellular compartmentation, the proteins themselves exhibited liquid-liquid phase condensation that is nucleated on SE. Thus, we propose that SAID1/2 reduce miRNA production through hijacking pri-miRNAs to prevent microprocessor activity while promoting SE phosphorylation and its destabilization in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrínsecamente Desordenadas , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/metabolismo , Procesamiento Postranscripcional del ARN , MicroARNs/metabolismo , Ribonucleasa III/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Nucleic Acids Res ; 51(13): 6944-6965, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246647

RESUMEN

U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , ARN Mensajero/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma/genética , ARN/genética , ARN Protozoario/genética , ARN Protozoario/metabolismo
5.
Nature ; 557(7706): 516-521, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29769717

RESUMEN

Chromatin remodelling factors (CHRs) typically function to alter chromatin structure. CHRs also reside in ribonucleoprotein complexes, but little is known about their RNA-related functions. Here we show that CHR2 (also known as BRM), the ATPase subunit of the large switch/sucrose non-fermentable (SWI/SNF) complex, is a partner of the Microprocessor component Serrate (SE). CHR2 promotes the transcription of primary microRNA precursors (pri-miRNAs) while repressing miRNA accumulation in vivo. Direct interaction with SE is required for post-transcriptional inhibition of miRNA accumulation by CHR2 but not for its transcriptional activity. CHR2 can directly bind to and unwind pri-miRNAs and inhibit their processing, and this inhibition requires the remodelling and helicase activity of CHR2 in vitro and in vivo. Furthermore, the secondary structures of pri-miRNAs differed between wild-type Arabidopsis thaliana and chr2 mutants. We conclude that CHR2 accesses pri-miRNAs through SE and remodels their secondary structures, preventing downstream processing by DCL1 and HYL1. Our study uncovers pri-miRNAs as a substrate of CHR2, and an additional regulatory layer upstream of Microprocessor activity to control miRNA accumulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , MicroARNs/biosíntesis , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Unión Proteica , Pliegue del ARN , Procesamiento Postranscripcional del ARN , Transcripción Genética
6.
J Exp Bot ; 74(7): 2295-2310, 2023 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-36416783

RESUMEN

RNA helicases (RHs) are a family of ubiquitous enzymes that alter RNA structures and remodel ribonucleoprotein complexes typically using energy from the hydrolysis of ATP. RHs are involved in various aspects of RNA processing and metabolism, exemplified by transcriptional regulation, pre-mRNA splicing, miRNA biogenesis, liquid-liquid phase separation, and rRNA biogenesis, among other molecular processes. Through these mechanisms, RHs contribute to vegetative and reproductive growth, as well as abiotic and biotic stress responses throughout the life cycle in plants. In this review, we systematically characterize RH-featured domains and signature motifs in Arabidopsis. We also summarize the functions and mechanisms of RHs in various biological processes in plants with a focus on DEAD-box and DEAH-box RNA helicases, aiming to present the latest understanding of RHs in plant biology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Helicasas DEAD-box/genética , Plantas/genética , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Empalme del ARN
7.
Plant Cell ; 32(2): 470-485, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31852774

RESUMEN

Among many glycoproteins within the plant secretory system, KORRIGAN1 (KOR1), a membrane-anchored endo-ß-1,4-glucanase involved in cellulose biosynthesis, provides a link between N-glycosylation, cell wall biosynthesis, and abiotic stress tolerance. After insertion into the endoplasmic reticulum, KOR1 cycles between the trans-Golgi network (TGN) and the plasma membrane (PM). From the TGN, the protein is targeted to growing cell plates during cell division. These processes are governed by multiple sequence motifs and also host genotypes. Here, we investigated the interaction and hierarchy of known and newly identified sorting signals in KOR1 and how they affect KOR1 transport at various stages in the secretory pathway. Conventional steady-state localization showed that structurally compromised KOR1 variants were directed to tonoplasts. In addition, a tandem fluorescent timer technology allowed for differential visualization of young versus aged KOR1 proteins, enabling the analysis of single-pass transport through the secretory pathway. Observations suggest the presence of multiple checkpoints/branches during KOR1 trafficking, where the destination is determined based on KOR1's sequence motifs and folding status. Moreover, growth analyses of dominant PM-confined KOR1-L48L49→A48A49 variants revealed the importance of active removal of KOR1 from the PM during salt stress, which otherwise interfered with stress acclimation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulasa/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología , Red trans-Golgi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Pared Celular/metabolismo , Celulasa/genética , Celulosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosilación , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Mutación , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Control de Calidad , Estrés Salino/genética , Tolerancia a la Sal/genética , Sales (Química)/metabolismo , Alineación de Secuencia , Transcriptoma
8.
RNA ; 26(12): 1862-1881, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32873716

RESUMEN

Trypanosome U-insertion/deletion RNA editing in mitochondrial mRNAs involves guide RNAs (gRNAs) and the auxiliary RNA editing substrate binding complex (RESC) and RNA editing helicase 2 complex (REH2C). RESC and REH2C stably copurify with editing mRNAs but the functional interplay between these complexes remains unclear. Most steady-state mRNAs are partially edited and include misedited "junction" regions that match neither pre-mRNA nor fully edited transcripts. Editing specificity is central to mitochondrial RNA maturation and function, but its basic control mechanisms remain unclear. Here we applied a novel nucleotide-resolution RNA-seq approach to examine ribosomal protein subunit 12 (RPS12) and ATPase subunit 6 (A6) mRNA transcripts. We directly compared transcripts associated with RESC and REH2C to those found in total mitochondrial RNA. RESC-associated transcripts exhibited site-preferential enrichments in total and accurate edits. REH2C loss-of-function induced similar substrate-specific and site-specific editing effects in total and RESC-associated RNA. It decreased total editing primarily at RPS12 5' positions but increased total editing at examined A6 3' positions. REH2C loss-of-function caused site-preferential loss of accurate editing in both transcripts. However, changes in total or accurate edits did not necessarily involve common sites. A few 5' nucleotides of the initiating gRNA (gRNA-1) directed accurate editing in both transcripts. However, in RPS12, two conserved 3'-terminal adenines in gRNA-1 could direct a noncanonical 2U-insertion that causes major pausing in 3'-5' progression. In A6, a noncanonical sequence element that depends on REH2C in a region normally targeted by the 3' half of gRNA-1 may hinder early editing progression. Overall, we defined transcript-specific effects of REH2C loss.


Asunto(s)
Proteínas Protozoarias/metabolismo , Edición de ARN , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma/metabolismo , Animales , Proteínas Protozoarias/genética , ARN Guía de Kinetoplastida , ARN Mensajero/genética , ARN Mitocondrial/genética , ARN Protozoario/genética , RNA-Seq , Especificidad por Sustrato , Trypanosoma/genética , Trypanosoma brucei brucei/genética
9.
PLoS Pathog ; 15(4): e1007728, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998777

RESUMEN

Plant viruses have evolved multiple strategies to overcome host defense to establish an infection. Here, we identified two components of a host mitogen-activated protein kinase (MAPK) cascade, MKK2 and MPK4, as bona fide targets of the ßC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNV). ßC1 interacts with the kinase domain of MKK2 and inhibits its activity. In vivo, ßC1 suppresses flagellin-induced MAPK activation and downstream responses by targeting MKK2. Furthermore, ßC1 also interacts with MPK4 and inhibits its kinase activity. TYLCCNV infection induces the activation of the MAPK cascade, mutation in MKK2 or MPK4 renders the plant more susceptible to TYLCCNV, and can complement the lack of ßC1. This work shows for the first time that a plant virus both activates and suppresses a MAPK cascade, and the discovery of the ability of ßC1 to selectively interfere with the host MAPK activation illustrates a novel virulence function and counter-host defense mechanism of geminiviruses.


Asunto(s)
Arabidopsis/inmunología , Geminiviridae/inmunología , Interacciones Huésped-Patógeno/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Nicotiana/inmunología , Proteínas Virales/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/antagonistas & inhibidores , Geminiviridae/metabolismo , Geminiviridae/patogenicidad , Fosforilación , Nicotiana/metabolismo , Nicotiana/virología
10.
J Exp Bot ; 72(11): 4144-4160, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33484251

RESUMEN

The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen, or wobble base pairing. In vivo, RNA folding is not a simple thermodynamic event of minimizing free energy. Instead, the process is constrained by transcription, RNA-binding proteins, steric factors, and the microenvironment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation, and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation, and plant responses to environmental variations such as temperature and salinity. At molecular level, RSS is correlated with splicing, polyadenylation, protein synthesis, and miRNA biogenesis and functions. In this review, we summarize newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN , Emparejamiento Base , Biología , Conformación de Ácido Nucleico , ARN/metabolismo , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismo
11.
PLoS Pathog ; 14(1): e1006789, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293689

RESUMEN

The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants.


Asunto(s)
Begomovirus/metabolismo , Ciclina D1/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Agrobacterium tumefaciens/fisiología , Begomovirus/patogenicidad , División Celular , Ciclina D1/química , Eliminación de Gen , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fosforilación , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/ultraestructura , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/ultraestructura , Proteínas Virales/química
12.
Plant Cell ; 29(12): 3214-3233, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29093215

RESUMEN

Phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) regulates transcription of protein-coding mRNAs and noncoding RNAs. CTD function in transcription of protein-coding RNAs has been studied extensively, but its role in plant noncoding RNA transcription remains obscure. Here, using Arabidopsis thaliana CTD PHOSPHATASE-LIKE4 knockdown lines (CPL4RNAi ), we showed that CPL4 functions in genome-wide, conditional production of 3'-extensions of small nuclear RNAs (snRNAs) and biogenesis of novel transcripts from protein-coding genes downstream of the snRNAs (snRNA-downstream protein-coding genes [snR-DPGs]). Production of snR-DPGs required the Pol II snRNA promoter (PIIsnR), and CPL4RNAi plants showed increased read-through of the snRNA 3'-end processing signal, leading to continuation of transcription downstream of the snRNA gene. We also discovered an unstable, intermediate-length RNA from the SMALL SCP1-LIKE PHOSPHATASE14 locus (imRNASSP14 ), whose expression originated from the 5' region of a protein-coding gene. Expression of the imRNASSP14 was driven by a PIIsnR and was conditionally 3'-extended to produce an mRNA. In the wild type, salt stress induced the snRNA-to-snR-DPG switch, which was associated with alterations of Pol II-CTD phosphorylation at the target loci. The snR-DPG transcripts occur widely in plants, suggesting that the transcriptional snRNA-to-snR-DPG switch may be a ubiquitous mechanism to regulate plant gene expression in response to environmental stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fosfoproteínas Fosfatasas/metabolismo , ARN Mensajero/biosíntesis , ARN Nuclear Pequeño/biosíntesis , Estrés Salino/fisiología , Arabidopsis/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Luciferasas/metabolismo , Modelos Biológicos , Mutación/genética , Motivos de Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Fosforilación , Plantas Modificadas Genéticamente , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN Nuclear Pequeño/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
13.
Methods ; 155: 30-40, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30503825

RESUMEN

Transcripts have intrinsic propensity to form stable secondary structure that is fundamental to regulate RNA transcription, splicing, translation, RNA localization and turnover. Numerous methods that integrate chemical reactions with next-generation sequencing (NGS) have been applied to study in vivo RNA structure, providing new insights into RNA biology. Dimethyl sulfate (DMS) probing coupled with mutational profiling through NGS (DMS-MaPseq) is a newly developed method for revealing genome-wide or target-specific RNA structure. Herein, we present our experimental protocol of a modified DMS-MaPseq method for plant materials. The DMS treatment condition was optimized, and library preparation procedures were simplified. We also provided custom scripts for bioinformatic analysis of genome-wide DMS-MaPseq data. Bioinformatic results showed that our method could generate high-quality and reproducible data. Further, we assessed sequencing depth and coverage for genome-wide RNA structure profiling in Arabidopsis, and provided two examples of in vivo structure of mobile RNAs. We hope that our modified DMS-MaPseq method will serve as a powerful tool for analyzing in vivo RNA structurome in plants.


Asunto(s)
Arabidopsis/genética , Biología Computacional/métodos , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/química , ARN de Planta/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Emparejamiento Base , Secuencia de Bases , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Conformación de Ácido Nucleico , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Ésteres del Ácido Sulfúrico/química
14.
Proc Natl Acad Sci U S A ; 114(15): 4011-4016, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348234

RESUMEN

MicroRNA (miRNA) is processed from primary transcripts with hairpin structures (pri-miRNAs) by microprocessors in the nucleus. How cytoplasmic-borne microprocessor components are transported into the nucleus to fulfill their functions remains poorly understood. Here, we report KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1) as a partner of hyponastic leaves 1 (HYL1) protein, a core component of microprocessor in Arabidopsis and functional counterpart of DGCR8/Pasha in animals. Null mutation of ketch1 is embryonic-lethal, whereas knockdown mutation of ketch1 caused morphological defects, reminiscent of mutants in the miRNA pathway. ketch1 knockdown mutation also substantially reduced miRNA accumulation, but did not alter nuclear-cytoplasmic shuttling of miRNAs. Rather, the mutation significantly reduced nuclear portion of HYL1 protein and correspondingly compromised the pri-miRNA processing in the nucleus. We propose that KETCH1 transports HYL1 from the cytoplasm to the nucleus to constitute functional microprocessor in Arabidopsis This study provides insight into the largely unknown nuclear-cytoplasmic trafficking process of miRNA biogenesis components through eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Regulación de la Expresión Génica de las Plantas , Carioferinas , MicroARNs/genética , Mutación , Plantas Modificadas Genéticamente , Transporte de Proteínas , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Nicotiana/genética , Nicotiana/metabolismo
15.
Plant J ; 90(4): 654-670, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27943457

RESUMEN

Like metazoans, plants use small regulatory RNAs (sRNAs) to direct gene expression. Several classes of sRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) mainly inhibit gene expression at post-transcriptional levels. In the past decades, plant miRNAs and ta-siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta-siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta-siRNAs in plant physiology and development.


Asunto(s)
MicroARNs/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , ARN Interferente Pequeño/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
16.
PLoS Genet ; 11(12): e1005705, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633550

RESUMEN

Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.


Asunto(s)
Autofagia/genética , Craterostigma/crecimiento & desarrollo , Transcriptoma/genética , Trehalosa/metabolismo , Cambio Climático , Craterostigma/genética , Desecación , Oryza , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Poaceae/genética , Estrés Fisiológico/genética , Trehalosa/genética , Agua
17.
Genome Biol ; 25(1): 54, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388963

RESUMEN

BACKGROUND: RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS: Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS: We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.


Asunto(s)
Arabidopsis , Exorribonucleasas , Animales , Humanos , Regiones no Traducidas 3' , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética
18.
Nat Plants ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918606

RESUMEN

MicroRNAs (miRNAs) are produced from highly structured primary transcripts (pri-miRNAs) and regulate numerous biological processes in eukaryotes. Due to the extreme heterogeneity of these structures, the initial processing sites of plant pri-miRNAs and the structural rules that determine their processing have been predicted for many miRNAs but remain elusive for others. Here we used semi-active DCL1 mutants and advanced degradome-sequencing strategies to accurately identify the initial processing sites for 147 of 326 previously annotated Arabidopsis miRNAs and to illustrate their associated pri-miRNA cleavage patterns. Elucidating the in vivo RNA secondary structures of 73 pri-miRNAs revealed that about 95% of them differ from in silico predictions, and that the revised structures offer clearer interpretation of the processing sites and patterns. Finally, DCL1 partners Serrate and HYL1 could synergistically and independently impact processing patterns and in vivo RNA secondary structures of pri-miRNAs. Together, our work sheds light on the precise processing mechanisms of plant pri-miRNAs.

19.
Nat Commun ; 14(1): 7484, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980416

RESUMEN

The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Geminiviridae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Geminiviridae/genética , Histonas/metabolismo , Replicación del ADN , Reparación del ADN/genética , Metiltransferasas/metabolismo
20.
Plant J ; 67(2): 292-304, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21457371

RESUMEN

As important components of small RNA (smRNA) pathways, Argonaute (AGO) proteins mediate the interaction of incorporated smRNAs with their targets. Arabidopsis contains 10 AGO proteins with specialized or redundant functions. Among them, AGO1 mainly acts in microRNA (miRNA) and small-interfering RNA (siRNA) pathways for post-transcriptional gene silencing (PTGS), whereas AGO4 regulates transcriptional gene silencing (TGS) via endogenous 24-nucleotide (nt) smRNAs. To fully characterize smRNAs associated with AGO1 and AGO4, we developed a two-step protocol to purify AGO/smRNA complexes from flowers, leaves, roots and seedlings with enhanced purity, and sequenced the smRNAs by Illumina technology. Besides recovering most previously annotated smRNAs, we also identified some additional miRNAs, phased smRNA clusters and small-interfering RNAs derived from the overlapping region of natural antisense transcript pairs (NAT) (nat-siRNAs). We also identified a smRNA distribution feature on miRNA precursors which may help to identify authentic miRNAs. Organ-specific sequencing provided digital expression profiles of all obtained smRNAs, especially miRNAs. The presence and conservation of collateral miRNAs on known miRNA precursors were also investigated. Intriguingly, about 30% of AGO1-associated smRNAs were 24-nt long and unrelated to the 21-nt species. Further analysis showed that DNA-dependent RNA polymerase IV (Pol IV)-dependent smRNAs were mainly 24 nt and associated with AGO4, whereas the majority of the potential Pol V-dependent ones were 21-nt smRNAs and bound to AGO1, suggesting the potential involvement of AGO1 in Pol V-related pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , ARN de Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas Argonautas/genética , Proteínas Argonautas/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , MicroARNs/clasificación , MicroARNs/genética , MicroARNs/aislamiento & purificación , Anotación de Secuencia Molecular , Interferencia de ARN , ARN de Planta/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA