Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 261: 119682, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067800

RESUMEN

Sediment-derived dissolved organic matter (SDOM) is instrumental in the cycling of nutrients and heavy metals within lakes, influencing ecological balance and contaminant distribution. Given the influence of photodegradation on the alteration and breakdown of SDOM, further understanding of this process is essential. In this research, the properties of the SDOM photodegradation process and its metal-binding reactions in Nansi Lake were analyzed using the EEM-PARAFAC and 2D-SF/FTIR-COS techniques. Our study identified three sorts of humic-like components and one protein-like component in SDOM, with the humic-like material accounting for 71.3 ± 5.19% of the fluorescence intensity (Fmax). Photodegradation altered the abundance and structure of SDOM, with a 41.6 ± 5.82% decrease in a280 and a 29.1 ± 9.31% reduction in Fmax after 7 days, notably reducing the protein-like component C4 by 54.0 ± 5.17% and the humic-like component C2 by 48.5 ± 2.54%, which led to SDOM being formed with lower molecular weight and aromaticity. After photodegradation, the LogKCu values for humic-like and protein-like substances decreased (humic-like C2: LogKCu: 1.35 ± 0.10-1.11 ± 0.15, protein-like C4: 1.49 ± 0.14-1.29 ± 0.34), yet the preferential binding sequence of protein-like materials and specific functional groups with Cu2+ such as aliphatic C-OH, amide (I) C=O and polysaccharide C-O groups remained unaltered. Our results enhance the knowledge of light-induced SDOM alterations and offer insights into SDOM-metal interactions in aquatic ecosystems.

2.
Angew Chem Int Ed Engl ; 63(31): e202406889, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38742478

RESUMEN

Given the merits of abundant resource, low cost and high electrochemical activity, hard carbons have been regarded as one of the most commercializable anode material for sodium-ion batteries (SIBs). However, poor rate capability is one of the main obstacles that severely hinder its further development. In addition, the relationships between preparation method, material structure and electrochemical performance have not been clearly elaborated. Herein, a simple but effective strategy is proposed to accurately construct the multiple structural features in hard carbon via adjusting the components of precursors. Through detailed physical characterization of the hard carbons derived from different regulation steps, and further combined with in-situ Raman and galvanostatic intermittent titration technique (GITT) analysis, the network of multiple relationships between preparation method, microstructure, sodium storage behavior and electrochemical performance have been successfully established. Simultaneously, exceptional rate capability about 108.8 mAh g-1 at 8 A g-1 have been achieved from RHC sample with high reversible capacity and desirable initial Coulombic efficiency (ICE). Additionally, the practical applications can be extended to cylindrical battery with excellent cycle behaviors. Such facile approach can provide guidance for large-scale production of high-performance hard carbons and provides the possibility of building practical SIBs with high energy density and durability.

3.
Comput Biol Med ; 170: 108034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301517

RESUMEN

The tensor low-rank prior has attracted considerable attention in dynamic MR reconstruction. Tensor low-rank methods preserve the inherent high-dimensional structure of data, allowing for improved extraction and utilization of intrinsic low-rank characteristics. However, most current methods are still confined to utilizing low-rank structures either in the image domain or predefined transformed domains. Designing an optimal transformation adaptable to dynamic MRI reconstruction through manual efforts is inherently challenging. In this paper, we propose a deep unrolling network that utilizes the convolutional neural network (CNN) to adaptively learn the transformed domain for leveraging tensor low-rank priors. Under the supervised mechanism, the learning of the tensor low-rank domain is directly guided by the reconstruction accuracy. Specifically, we generalize the traditional t-SVD to a transformed version based on arbitrary high-dimensional unitary transformations and introduce a novel unitary transformed tensor nuclear norm (UTNN). Subsequently, we present a dynamic MRI reconstruction model based on UTNN and devise an efficient iterative optimization algorithm using ADMM, which is finally unfolded into the proposed T2LR-Net. Experiments on two dynamic cardiac MRI datasets demonstrate that T2LR-Net outperforms the state-of-the-art optimization-based and unrolling network-based methods.


Asunto(s)
Aprendizaje , Imagen por Resonancia Magnética , Algoritmos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador
4.
Oncol Lett ; 28(2): 351, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872860

RESUMEN

Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is an autosomal dominant syndrome caused by heterozygous pathogenic germline variants of the SDH gene. SDH mutations are associated with an increased risk of developing RCC, although studies describing SDH-deficient RCC are currently limited. The present study reported a case of SDH-deficient RCC with high malignancy and rare bone metastasis. The patient was diagnosed with a right renal mass through B-mode ultrasound imaging and showed a carcinoma embolus in the right renal vein and inferior vena cava through kidney contrast-enhanced computed tomography. A whole-body bone scan showed radionuclide accumulation in the upper end of the left humerus, which indicated possible pathological bone destruction. As a result, surgical resection was performed. The postoperative pathology indicated a high-grade RCC and although the specific classification remained uncertain, hereditary leiomyomatosis and RCC was suspected. Subsequently, a germline mutation of the succinate dehydrogenase complex flavoprotein subunit A gene was identified through high-throughput sequencing (c.1A>G, p. Met1?) and immunohistochemistry demonstrated the loss of succinate dehydrogenase complex flavoprotein subunit B expression. Postoperatively, the patient underwent radiotherapy and targeted therapy. After 6 months of follow-up treatment, there was no indication of recurrence or metastasis on thoracoabdominal CT and whole-body bone scintigraphy. Based on the present report, germline screening should potentially be encouraged in early-onset patients as family history or pathological results may not provide sufficient information for the early, differential diagnosis of SDH-deficient RCC.

5.
Chem Sci ; 15(17): 6244-6268, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699270

RESUMEN

Because of its abundant resources, low cost and high reversible specific capacity, hard carbon (HC) is considered as the most likely commercial anode material for sodium-ion batteries (SIBs). Therefore, reasonable design and effective strategies to regulate the structure of HCs play a crucial role in promoting the development of SIBs. Herein, the progress in the preparation approaches for HC anode materials is systematically overviewed, with a special focus on the comparison between traditional fabrication methods and advanced strategies emerged in recent years in terms of their influence on performance, including preparation efficiency, initial coulombic efficiency (ICE), specific capacity and rate capability. Furthermore, the advanced strategies are categorized into two groups: those exhibiting potential for large-scale production to replace traditional methods and those presenting guidelines for achieving high-performance HC anodes from top-level design. Finally, challenges and future development prospects to achieve high-performance HC anodes are also proposed. We believe that this review will provide beneficial guidance to actualize the truly rational design of advanced HC anodes, facilitating the industrialization of SIBs and assisting in formulating design rules for developing high-end advanced electrode materials for energy storage devices.

6.
J Hazard Mater ; 465: 133124, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142658

RESUMEN

In actual lakes, the "unstable components" of macrophyte-derived DOM (MDOM) are always degraded and cannot exist abidingly, but the environmental impact brought by it is ignored. In this study, MDOM from Potamogeton crispus was extracted to carry out microbial combined photodegradation (M-Photodegradation) and fluorescence titration experiments. Then the traits and metal binding reaction of MDOM under M-Photodegradation were analysed and compared with the features of lake-derived DOM (LDOM) from point monitoring of Dongping Lake through EEM-PARAFAC, 2D-SF-COS, and 2D-FTIR-COS. The results showed that the features of MDOM after M-Photodegradation were closer to those of LDOM. The degradation amplitudes were 93.53% ± 0.53% for C4 in microbial degradation and 78.31% ± 0.74% for C3 in photodegradation. Correspondingly, both were hardly detected in LDOM. Protein-like substances and aliphatic C-OH were preferentially selected by Cu2+, while humic-like matter and phenolic hydroxyl O-H responded faster to Pb2+. Although the binding sequences remained unchanged after M-Photodegradation, the LogKCu and LogKPb of components decreased overall, indicating increased environmental risks. This study proves that the refractory MDOM retained after degradation was more consistent with the actual state of macrophytic lakes and provides more information for the treatment of heavy metal pollution in lakes.


Asunto(s)
Lagos , Plomo , Espectrometría de Fluorescencia/métodos , Lagos/química , Plomo/análisis , Fotólisis , Sustancias Húmicas/análisis , Análisis Factorial
7.
Front Microbiol ; 15: 1417014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176275

RESUMEN

Germplasm resources of edible mushrooms are essential for the breeding of varieties with improved traits. Analysis of the genetic diversity of Grifola frondosa germplasm resources and clarification of the genetic relationships among strains can provide valuable information for the selection of breeding parents. A total of 829,488 high-quality SNP loci were screened from 2,125,382 SNPs obtained by sequencing 60 G. frondose. Phylogenetic analysis, PCA, and population structure analysis based on the high-quality SNPs showed that the 60 strains could be divided into five subgroups, and the clustering results were consistent with the geographical distributions of these strains. Based on high-quality SNP loci, a core collection containing 18 representative germplasm resources was constructed, and 1,473 Kompetitive Allele-Specific PCR markers were obtained. A total of 722 SNP markers in the exonic regions were screened using KASP-genotyping experiments, and 50 candidate SNP markers and 12 core SNP markers were obtained. Genetic fingerprints of G. frondosa germplasm resources were constructed based on the selected SNP markers; these fingerprints provide an accurate, rapid, convenient, and efficient method for the identification of G. frondosa germplasm resources. The results of this study have important implications for the preservation and utilization of G. frondosa germplasm resources and the identification of varieties.

8.
Int J Biol Macromol ; 261(Pt 2): 129789, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296127

RESUMEN

Interactions between polysaccharides and ionic liquids (ILs) at the molecular level are essential to elucidate the dissolution and/or plasticization mechanism of polysaccharides. Herein, saccharide-based ILs (SILs) were synthesized, and cellulose membrane was soaked in different SILs to evaluate the interactions between SILs and cellulose macromolecules. The relevant results showed that the addition of SILs into cellulose can effectively reduce the intra- and/or inter-molecular hydrogen bonds of polysaccharides. Glucose-based IL showed the intensest supramolecular interactions with cellulose macromolecules compared to sucrose- and raffinose-based ILs. Two-dimensional correlation and perturbation-correlation moving window Fourier transform infrared techniques were for the first time used to reveal the dynamic variation of the supramolecular interactions between SILs and cellulose macromolecules. Except for the typical HO⋯H interactions of cellulose itself, stronger -Cl⋯HO hydrogen bonding interactions were detected in the specimen of SILs-modified cellulose membranes. Supramolecular interactions of -Cl⋯H, HO⋯H, C-Cl⋯H, and -C=O⋯H between SILs and cellulose macromolecules sequentially responded to the stimuli of temperature. This work provides a new perspective to understanding the interaction mechanism between polysaccharides and ILs, and an avenue to develop the next-generation ILs for dissolving or thermoplasticizing polysaccharide materials.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Imidazoles/química , Celulosa/química , Polisacáridos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA