Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967146

RESUMEN

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Nitrógeno , Fitomejoramiento , Productos Agrícolas/genética
2.
Plant J ; 118(1): 42-57, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112614

RESUMEN

Drought stress caused by global warming has resulted in significant tree mortality, driving the evolution of water conservation strategies in trees. Although phytohormones have been implicated in morphological adaptations to water deficits, the molecular mechanisms underlying these processes in woody plants remain unclear. Here, we report that overexpression of PtoMYB142 in Populus tomentosa results in a dwarfism phenotype with reduced leaf cell size, vessel lumen area, and vessel density in the stem xylem, leading to significantly enhanced drought resistance. We found that PtoMYB142 modulates gibberellin catabolism in response to drought stress by binding directly to the promoter of PtoGA2ox4, a GA2-oxidase gene induced under drought stress. Conversely, knockout of PtoMYB142 by the CRISPR/Cas9 system reduced drought resistance. Our results show that the reduced leaf size and vessel area, as well as the increased vessel density, improve leaf relative water content and stem water potential under drought stress. Furthermore, exogenous GA3 application rescued GA-deficient phenotypes in PtoMYB142-overexpressing plants and reversed their drought resistance. By suppressing the expression of PtoGA2ox4, the manifestation of GA-deficient characteristics, as well as the conferred resistance to drought in PtoMYB142-overexpressing poplars, was impeded. Our study provides insights into the molecular mechanisms underlying tree drought resistance, potentially offering novel transgenic strategies to enhance tree resistance to drought.


Asunto(s)
Resistencia a la Sequía , Populus , Giberelinas/metabolismo , Populus/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Agua/metabolismo , Sequías , Plantas Modificadas Genéticamente/genética
3.
New Phytol ; 241(2): 592-606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974487

RESUMEN

Auxin signaling provides a promising approach to controlling root system architecture and improving stress tolerance in plants. However, how the auxin signaling is transducted in this process remains unclear. The Aux indole-3-acetic acid (IAA) repressor IAA17.1 is stabilized by salinity, and primarily expressed in the lateral root (LR) primordia and tips in poplar. Overexpression of the auxin-resistant form of IAA17.1 (IAA17.1m) led to growth inhibition of LRs, markedly reduced salt tolerance, increased reactive oxygen species (ROS) levels, and decreased flavonol content. We further identified that IAA17.1 can interact with the heat shock protein HSFA5a, which was highly expressed in roots and induced by salt stress. Overexpression of HSFA5a significantly increased flavonol content, reduced ROS accumulation, enhanced LR growth and salt tolerance in transgenic poplar. Moreover, HSFA5a could rescue the defective phenotypes caused by IAA17.1m. Expression analysis showed that genes associated with flavonol biosynthesis were altered in IAA17.1m- and HAFA5a-overexpressing plants. Furthermore, we identified that HSFA5a directly activated the expression of key enzyme genes in the flavonol biosynthesis pathway, while IAA17.1 suppressed HSFA5a-mediated activation of these genes. Collectively, the IAA17.1/HSFA5a module regulates flavonol biosynthesis, controls ROS accumulation, thereby modulating the root system of poplar to adapt to salt stress.


Asunto(s)
Populus , Tolerancia a la Sal , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
4.
Environ Res ; 251(Pt 2): 118721, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490624

RESUMEN

The gradual increase in cattle farming has led to a huge production of cattle manure (CM), but the conventional treatment methods are less efficient. In this study, the treatment method of anaerobic digestion (AD) of high-solids CM by combining nanobubble water (NBW) with different gases was proposed to present a new idea for the reduction, harmlessness, and resourcefulness of CM. It was found that the performance of the digester with added NBW was better than the control. Among them, the cumulative methane yield T-Air: 227.09 mL g-1 VSadded and T-CO2: 226.12 mL g-1 VSadded increased by 17.72 % and 17.22 %, respectively, compared with the control T: 192.90 mL g-1 VSadded under thermophilic conditions. Under mesophilic conditions, M-Air: 162.39 mL g-1 VSadded increased by 9.68 % compared with control M: 148.05 mL g-1 VSadded. Microbial communities analyzed at the genus level revealed that the relative abundance of bacteria favorable to hydrolysis and acid-producing processes, such as Defluviitalea, Haloplasma, and Bacillus, increased to varying degrees. Moreover, the relative abundance of archaea favorable for methanogenesis, such as Methanoculleus, Methanobrevibacter, and Methanosarcina, also increased to varying degrees. Therefore, the addition of NBW promoted the hydrolysis of high-solids CM, enhanced the stability of the reaction, improved the methanogenic performance, and increased the RA of favorable genera, which ultimately led to a better performance of the AD of high-solids CM.


Asunto(s)
Estiércol , Metano , Estiércol/microbiología , Animales , Bovinos , Anaerobiosis , Metano/metabolismo , Metano/análisis , Agua/química , Reactores Biológicos , Bacterias/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38490452

RESUMEN

OBJECTIVE: To systematically evaluate the effect of contralaterally controlled functional electrical stimulation (CCFES) on motor function after acquired brain injury (ABI). DATA SOURCES: We searched the PubMed, Embase, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database (PEDro), Web of Science, SinoMed, CNKI, VIP Database for Chinese Technical Periodicals and Wanfang Database, from inception to December 2023. STUDY SELECTION: Studies were included if they were randomized controlled trials assessing the effect of CCFES on motor function compared with routine rehabilitation or routine electrical stimulation after ABI. Two independent reviewers screened 894 articles for inclusion. DATA EXTRACTION: The extracted data included study information, sample size, study population, interventions, measurement evaluated, and the test interval. DATA SYNTHESIS: This study included 24 trials with 28 intervention-control pairs and 1148 participants with stroke. Meta-analysis showed that the CCFES group demonstrated more significant improvement than the control group in the Fugl-Meyer Assessment Scale (FMA) (standardized mean difference [SMD]=0.66, 95% confidence interval [CI]=0.44-0.88, P<.001), active range of motion (AROM) (SMD=0.77, 95% CI=0.54-1.01, P<.001), modified Barthel Index (MBI) (SMD=0.55, 95% CI=0.29-0.81, P<.001), Motricity Index (MI) (SMD=0.60, 95% CI=0.26-0.94, P<.001) surface electromyography (sEMG) (SMD=0.81, 95% CI=0.56-1.06, P<.001), and Functional Ambulation Category (FAC) (SMD=0.53, 95% CI=0.24-0.83, P<.001). The CCFES group showed no significant improvement over the control group in the Action Research Arm Test (ARAT) (SMD=0.24, 95% CI=-0.10-0.58, P=.17). CONCLUSIONS: Our synthesized evidence suggests that CCFES could improve motor function in patients with stroke. More RCTs with other patients with brain injury are required to provide future evidence on the therapy effect of CCFES and make a contribution to the uniform standard of CCFES.

6.
Child Care Health Dev ; 50(1): e13166, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648669

RESUMEN

BACKGROUND: This study aimed to examine attentional bias (AB) for sad and social rejection words in Chinese left-behind children (LBC) with depression. METHOD: We investigated both stimulus specificity and components of AB in different groups using a cross-sectional design. Data were drawn from a school assessment of depression and anxiety, from which we selected LBC with depression (n = 40), LBC without depression (n = 33), a control group with depression (n = 31), and a control group without depression (n = 37). AB was measured with a dot-probe task covering two stimulus types (sad and rejection). RESULTS: The analysis of AB scores revealed a significant three-way interaction (LBC × depression × word type), F(1, 137) = 4.00, p = 0.047, η2 = 0.028, with depressed non-LBC exhibiting a significant depression × word type interaction, F(1, 66) = 4.67, p = 0.034, η2 = 0.066, while the depression × word type interaction was not significant in LBC, F(1, 71) = 0.18, p = 0.675, η2 = 0.002. Depressed children living with their parents showed AB towards sad words but not rejection words, while depressed LBC showed greater AB towards both rejection and sad words. CONCLUSIONS: The findings provide evidence that an AB towards sad information is critically involved in the depressed LBC. Compared with non-LBC depressed individuals, an AB for rejection may be involved as a risk factor in the LBC. It sheds light on the effective intervention programmes for LBC's depression and have important practical significance for reducing depression and improving the mental health of LBC.


Asunto(s)
Sesgo Atencional , Depresión , Niño , Humanos , Estudios Transversales , Ansiedad , China
7.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542498

RESUMEN

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Asunto(s)
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacología , Camellia sinensis/metabolismo , Hojas de la Planta/metabolismo , Té/química
8.
Neurobiol Dis ; 179: 106064, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878327

RESUMEN

Stroke is a major cause of mortality and morbidity and most acute strokes are ischemic. Evidence-based medicine has demonstrated the effectiveness of constraint-induced movement therapy (CIMT) in the recovery of motor function in patients after ischemic stroke, but the specific treatment mechanism remains unclear. Herein, our integrated transcriptomics and multiple enrichment analysis studies, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) studies show that CIMT conduction broadly curtails immune response, neutrophil chemotaxis, and chemokine-mediated signaling pathway, CCR chemokine receptor binding. Those suggest the potential effect of CIMT on neutrophils in ischemic mice brain parenchyma. Recent studies have found that accumulating granulocytes release extracellular web-like structures composed of DNA and proteins called neutrophil extracellular traps (NETs), which destruct neurological function primarily by disrupting the blood-brain barrier and promoting thrombosis. However, the temporal and spatial distribution of neutrophils and their released NETs in parenchyma and their damaging effects on nerve cells remain unclear. Thus, utilizing immunofluorescence and flow cytometry, our analyses uncovered that NETs erode multiple regions such as primary motor cortex (M1), striatum (Str), nucleus of the vertical limb of the diagonal band (VDB), nucleus of the horizontal limb of the diagonal band (HDB) and medial septal nucleus (MS), and persist in the brain parenchyma for at least 14 days, while CIMT can reduce the content of NETs and chemokines CCL2 and CCL5 in M1. Intriguingly, CIMT failed to further reduce neurological deficits after inhibiting the NET formation by pharmacologic inhibition of peptidylarginine deiminase 4 (PAD4). Collectively, these results demonstrate that CIMT could alleviate cerebral ischemic injury induced locomotor deficits by modulating the activation of neutrophils. These data are expected to provide direct evidence for the expression of NETs in ischemic brain parenchyma and novel insights into the mechanisms of CIMT protecting against ischemic brain injury.


Asunto(s)
Terapia por Ejercicio , Trampas Extracelulares , Trastornos Motores , Accidente Cerebrovascular , Animales , Ratones , Encéfalo/metabolismo , Trampas Extracelulares/metabolismo , Trampas Extracelulares/fisiología , Trastornos Motores/metabolismo , Trastornos Motores/terapia , Neutrófilos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia
9.
Anal Chem ; 95(24): 9373-9379, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37276048

RESUMEN

Extracellular vesicle PD-L1 (programmed death-1 ligand 1) is of greater value in tumor diagnosis, prognosis, and efficacy monitoring of anti-PD-1/PD-L1 immunotherapy. However, soluble PD-L1 interferes with the accurate detection of extracellular vesicle (EV) PD-L1. Here, we developed a microfluidic differentiation method for the detection of extracellular PD-L1, without the interference of soluble, by DNA computation with lipid probes and PD-L1 aptamer as inputs (DECLA). For the developed DECLA method, a cholesterol-DNA probe was designed that efficiently embeds into the EV membrane, and an aptamer-based PD-L1 probe was used for PD-L1 recognition. Due to the stable secondary structure of the designed connector, only cobinding of cholesterol-DNA and PD-L1 affinity probe induced biotin-labeled connector activation, while soluble PD-L1 cannot hybridize. As a result, PD-L1 EVs can be efficiently captured by streptavidin-functioned herringbone chip and quantified by anti-CD63-induced fluorescence signal. The high specificity of dual-input DNA computation allied to the high sensitivity of microfluidic-based detection was suitable for distinguishing lung cancer patients from healthy donors, highlighting its potential translation to clinical diagnosis and therapy monitoring.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pulmonares , Humanos , Computadores Moleculares , Microfluídica , Neoplasias Pulmonares/patología , Pronóstico
10.
New Phytol ; 240(5): 1848-1867, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37691138

RESUMEN

Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.


Asunto(s)
Resistencia a la Sequía , Populus , Proteínas de Plantas/metabolismo , Sequías , Agua/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
11.
Cell Mol Neurobiol ; 43(4): 1487-1497, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35917043

RESUMEN

Stroke is a common cerebrovascular disease with high morbidity, mortality, and disability worldwide. Post-stroke dysfunction is related to the death of neurons and impairment of synaptic structure, which results from cerebral ischemic damage. Currently, transcranial magnetic stimulation (TMS) techniques are available to provide clinically effective interventions and quantitative diagnostic and prognostic biomarkers. The development of TMS has been 40 years and a range of repetitive TMS (rTMS) protocols are now available to regulate neuronal plasticity in many neurological disorders, such as stroke, Parkinson disease, psychiatric disorders, Alzheimer disease, and so on. Basic studies in an animal model with ischemic stroke are significant for demonstrating potential mechanisms of neural restoration induced by rTMS. In this review, the mechanisms were summarized, involving synaptic plasticity, neural cell death, neurogenesis, immune response, and blood-brain barrier (BBB) disruption in vitro and vivo experiments with ischemic stroke models. Those findings can contribute to the understanding of how rTMS modulated function recovery and the exploration of novel therapeutic targets. The mechanisms of rTMS in treating ischemic stroke from animal models. rTMS can prompt synaptic plasticity by increasing NMDAR, AMPAR and BDNF expression; rTMS can inhibit pro-inflammatory cytokines TNF and facilitate the expression of anti-inflammatory cytokines IL-10 by shifting astrocytic phenotypes from A1 to A2, and shifting microglial phenotypes from M1 to M2; rTMS facilitated the release of angiogenesis-related factors TGFß and VEGF in A2 astrocytes, which can contribute to vasculogenesis and angiogenesis; rTMS can suppress apoptosis by increasing Bcl-2 expression and inhibiting Bax, caspase-3 expression; rTMS can also suppress pyroptosis by decreasing caspase-1, IL-1ß, ASC, GSDMD and NLRP1 expression. rTMS, repetitive transcranial magnetic stimulation; NMDAR, N-methyl-D-aspartic acid receptors; AMPAR: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; GSDMD: cleaved Caspase-1 cleaves Gasdermin D; CBF: cerebral blood flow.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Estimulación Magnética Transcraneal/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Encéfalo/metabolismo , Accidente Cerebrovascular/terapia , Modelos Animales de Enfermedad , Caspasas/metabolismo
12.
Virol J ; 20(1): 13, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670408

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Filogenia , Mutación , Vacunas Virales/genética , Aminoácidos/genética , China/epidemiología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/epidemiología
13.
Wei Sheng Yan Jiu ; 52(3): 489-496, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37500532

RESUMEN

OBJECTIVE: To study the effect of autophagy in cadmium chloride(CdCl_2)-induced apoptosis of mouse spermatocytes(GC-2 spd) cells and explore the underlying molecular mechanisms. METHODS: The cells were treated with different concentrations of CdCl_2(0, 5 and 10 µmol/L) for 24 h. Hoechst33342 staining and monodansylcadaverine(MDC) were performed to explore the formation of autophagosomes and apoptotic bodies. The apoptosis of cadmium-treated cells was examined by TUNEL staining. Autophagy inhibitor 3-methyladenine(3-MA)(60 µmol/L), apoptotic inhibitorCaspase inhibitor Z-VAD-FMK( zVAD-FMK)(50 nmol/L), autophagy inducer rapamycin(RAPA)(50 nmol/L) and lysosomal inhibitor chloroquine(CQ)(10 µmol/L) were added to cell culture in the presence/absence of CdCl_2(10 µmol/L) to treat GC-2 spd cells for 24 h. The expression levels of autophagy-related proteins LC3, P62, and pro-apoptotic proteins cleaved Caspase-3 and cleaved Caspase-9 were examined by Western blot. RESULTS: Autophagosomes aggregated and the number of apoptotic cells increased after exposure to CdCl_2 for 24 h. Western blot result showed that in the 5 and 10 µmol/L CdCl_2 exposure groups, the protein expression levels of LC3II/LC3I increased to 9.23±0.81 and 12.15±0.80 compared with the control group(5.50±0.56)(P<0.05), LC3II protein expression level increased to 3.35±0.14 and 3.47±0.32 compared with the control group(2.35±0.34)(P<0.05), P62 protein expression level increased to 1.48±0.12 and 1.80±0.22 compared with the control group(0.83±0.09)(P<0.05). Compared with the CdCl_2-treated group, the protein expression levels of LC3II/LC3I, LC3II, P62, cleaved Caspase-9 and cleaved Caspase-3 after 3-MA treatment decreased to 0.90±0.07(CdCl_2 group: 1.47±0.06), 1.57±0.14(CdCl_2 group: 2.45±0.29), 0.82±0.05(CdCl_2 group: 1.44±0.18), 0.18±0.01(CdCl_2 group: 0.28±0.01) and 0.61±0.84(CdCl_2 group: 1.15±0.04)(P<0.05). Compared with the CdCl_2-treated group, the protein expression levels of cleaved Caspase-9 and cleaved Caspase-3 after zVAD-FMK treatment decreased to 0.12±0.01(CdCl_2 group: 0.28±0.01) and 0.34±0.01(CdCl_2 group: 1.15±0.04)(P<0.05), while those of LC3II/LC3I, LC3II and P62 had no significant change(P>0.05). Compared with the CdCl_2-treated group, RAPA enhanced cadmium-induced LC3II/LC3I, LC3II and P62 protein expressions to 2.22±0.21(CdCl_2 group: 1.56±0.06), 3.72±0.21(CdCl_2 group: 2.97±0.15) and 2.41±0.19(CdCl_2 group: 1.52±0.35)(P<0.05). Western blot result showed that compared with the CdCl_2 group, the protein expressions of LC3II/LC3I, LC3II, P62 and cleaved Caspase-3 in the CdCl_2 and CQ treatment groups increased to 3.21±0.31(CdCl_2 group: 2.09±0.25), 4.49±0.43(CdCl_2 group: 2.72±0.26), 2.59±0.19(CdCl_2 group: 1.84±0.19) and 2.43±0.23(CdCl_2 group: 1.50±0.27)(P<0.05). CONCLUSION: Cadmium chloride induces apoptosis of mouse spermatocyte cells by inhibiting autophagosome-lysosomal fusion and prompting abnormal aggregation of autophagosomes.


Asunto(s)
Cloruro de Cadmio , Cadmio , Masculino , Ratones , Animales , Caspasa 3/farmacología , Caspasa 9/genética , Caspasa 9/farmacología , Cloruro de Cadmio/toxicidad , Autofagia , Apoptosis
14.
Eur J Neurol ; 29(1): 358-371, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558762

RESUMEN

BACKGROUND AND PURPOSE: The effect of mirror therapy for unilateral neglect after stroke currently remains uncertain. METHODS: This systematic review investigated the effect of mirror therapy on neglect and daily living activities in patients with unilateral neglect after stroke when compared with no treatment, sham mirror therapy, or routinely applied therapies only. We performed a systematic electronic search of PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, and Wanfang Data to identify relevant randomized control trials (RCTs). RESULTS: We included five RCTs in the data synthesis. Mirror therapy (combined or not with other treatments) was more effective in improving neglect as compared with sham mirror therapy or no treatment (combined or not with the other therapies; standard mean difference [SMD] = 1.62, 95% confidence interval [CI] = 1.03-2.21, p < 0.00001). Mirror therapy (combined or not with other therapies) was effective in improving daily living activities as compared with sham mirror therapy or no treatment (combined or not with the other therapies; SMD = 2.09, 95% CI = 0.63-3.56, p = 0.005). CONCLUSIONS: Our results show that mirror therapy effectively improves neglect and daily living activities in patients with unilateral neglect after stroke. Future trials with high methodological quality and larger sample sizes are needed to determine the immediate and long-term effect of appropriate mirror therapy protocol for unilateral neglect.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Actividades Cotidianas , China , Humanos , Terapia del Movimiento Espejo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos
15.
Reprod Fertil Dev ; 34(12): 819-832, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35577543

RESUMEN

Although oviductal sperm storage are essential steps in reproduction for female animals with internal fertilisation, no systematic study on the identification of genes involving sperm storage has been performed in crocodilian species. In the present research, the relationship between morphological variation related to sperm storage in the oviduct and gene expression patterns derived from RNA sequencing analyses between active period (AP), breeding period (BP), and hibernation period (HP) were investigated. The corresponding results indicated that sperm were observed not only in the ciliated cells within infundibulum and mucosal layer of uterus during BP, but also been detected in the spermatosperm storage tube (SST) in the anterior uterus at HP stage. The further transmission electron microscopy analysis indicated that the differences in the number and activity of the secretory cells likely to attributed to the seasonal variation of microenvironment related to the sperm storage. Based on the RNA-sequecing, 13147 DEGs related to the Peroxisome proliferator-activated receptors (PPARs) and FOXO signalling were identified, including these, the down-regulated ATG12 and BCL2L11 in the HP group may thus constitute an important point of convergence between autophagy and apoptosis involving the FOXO1 pathway. The genes involved in the PPARs pathway might modulate the immune response and thereby contribute to prolong the life span of stored spermatozoa in Alligator sinensis . The outcomes of this study provide fundamental insights into the mechanism of sperm storage in A. sinensis .


Asunto(s)
Caimanes y Cocodrilos , Oviductos , Caimanes y Cocodrilos/fisiología , Animales , China , Femenino , Expresión Génica , Masculino , Oviductos/fisiología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Estaciones del Año , Semen , Espermatozoides/fisiología
16.
J Sep Sci ; 45(14): 2458-2477, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35543088

RESUMEN

Ginkgolide B is a dietary diterpene with multiple pharmacological activities. However, current research on ginkgolide B is not comprehensive. The current study analyzed the metabolic profile of ginkgolide B in vivo and in vitro using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To detect and identify the different metabolites in ginkgolide B, a novel data processing method was used as an assistant tool. A total of 53 different metabolites of ginkgolide B (38 phase I metabolites and 15 phase II metabolites) were detected relative to blank samples. The biotransformation route of ginkgolide B was identified as oxidation, dehydroxylation, hydrogenation, decarbonylation, demethylation, sulfate conjugation, glucose conjugation, methylation, and acetylation. The current study demonstrated a method for rapidly detecting and identifying metabolites and provided useful information to further characterize the pharmacology and mechanism of ginkgolide B. A method for the analysis of other diterpene metabolic components in vivo and in vitro was also established.


Asunto(s)
Metaboloma , Animales , Cromatografía Líquida de Alta Presión/métodos , Ginkgólidos , Lactonas , Espectrometría de Masas/métodos , Ratas , Ratas Sprague-Dawley
17.
Biomed Chromatogr ; 36(8): e5409, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35562325

RESUMEN

A specific ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) method has been described for the simultaneous determination of the metabolites of tacrine, bupropion, diclofenac, dextromethorphan and midazolam, which are the five probe drugs of the five cytochrome P450 (CYP450) isoforms CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A4. The inhibition degree was determined by calculating the IC50 . The chromatographic separation was performed on a C18 column with a mobile phase consisting of 0.1% formic acid and acetonitrile. The mass spectrometric analysis was conducted in positive electrospray ionization mode. The IC50 values of CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A were 113.4, 83.78, 22.50, 9.081 and 52.76 µmol L-1 , respectively. The in vitro results demonstrated that vindoline could inhibit CYP2D1 activity in rats, and weak inhibitory effect on CYP2C11 and CYP3A, but had no obvious effects on CYP1A2 and CYP2B.


Asunto(s)
Citocromo P-450 CYP1A2 , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Isoformas de Proteínas , Ratas , Espectrometría de Masas en Tándem/métodos , Vinblastina/análogos & derivados
18.
Phytochem Anal ; 33(4): 517-532, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35144310

RESUMEN

INTRODUCTION: The diterpenoids are the most important active constituents that contribute to the pharmacological efficacy of Isodon serra (Maxim.) Hara. Clinical studies have revealed that diterpenoids possess multiple features, e.g. antitumour, antitubercular and anti-ischemic activities. Therefore, the identification and detection of diterpenoids may be equally important for understanding the pharmacological basis of diterpenoids and enhancing the product quality control of I. serra. OBJECTIVES: The purpose of this study was to develop a practical analysis approach of rapid characterisation using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) for the structure characterisation of the ent-kaurane diterpenoids from I. serra. METHODOLOGY: The analytical strategy was as follows: first, ent-kaurane diterpenoids were detected by a novel on-line data acquisition approach, i.e. sequential window acquisition of all theoretical fragment-ion spectra (SWATH). Second, the MS of eight ent-kaurane diterpenoids was explored, and their mass spectrum cleavage pathways were summarised and determined. Finally, the methanol extract of I. serra was studied using SWATH and identified by extracted ion chromatography (XIC). RESULTS: Compared to the traditional information-dependent acquisition (IDA) method, SWATH significantly improved the hit rate of ent-kaurane diterpenoids. With support from UHPLC separation and specific detection by tandem mass spectrometry (MS/MS), 48 ent-kaurane diterpenoids were successfully characterised and classified as ent-kaurane diterpenoids from a complex matrix. CONCLUSIONS: These combined qualitative methods were used to provide a potential approach for the characterisation of traditional Chinese medicine (TCM) and its preparations. Meanwhile, the SWATH provided a novel and reliable method for the structural characterisation of ent-kaurane diterpenoids from other complicated TCMs.


Asunto(s)
Diterpenos de Tipo Kaurano , Diterpenos , Isodon , Cromatografía Líquida de Alta Presión , Diterpenos/análisis , Diterpenos de Tipo Kaurano/análisis , Isodon/química , Espectrometría de Masas en Tándem/métodos
19.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362309

RESUMEN

As a consequence of long-term coevolution and natural selection, the leaves of mulberry (Morus alba) trees have become the best food source for silkworms (Bombyx mori). Nevertheless, the molecular and genomic basis of defense response remains largely unexplored. In the present study, we assessed changes in the transcriptome changes of mulberry in response to silkworm larval feeding at 0, 3, and 6 h. A total of 4709 (up = 2971, down = 1738) and 3009 (up = 1868, down = 1141) unigenes were identified after 3 and 6 h of silkworm infestation, respectively. MapMan enrichment analysis results show structural traits such as leaf surface wax, cell wall thickness and lignification form the first physical barrier to feeding by the silkworms. Cluster analysis revealed six unique temporal patterns of transcriptome changes. We predicted that mulberry promoted rapid changes in signaling and other regulatory processes to deal with mechanical damage, photosynthesis impairment, and other injury caused by herbivores within 3-6 h. LRR-RK coding genes (THE1, FER) was predicted participated in perception of cell wall perturbation in mulberry responding to silkworm feeding. Ca2+ signal sensors (CMLs), ROS (OST1, SOS3), RBOHD/F, CDPKs, and ABA were part of the regulatory network after silkworm feeding. Jasmonic acid (JA) signal transduction was predicted to act in silkworm feeding response, 10 JA signaling genes (such as OPR3, JAR1, and JAZ1) and 21 JA synthesis genes (such as LOX2, AOS, and ACX1) were upregulated after silkworm feeding for 3 h. Besides, genes of "alpha-Linolenic acid metabolism" and "phenylpropanoid biosynthesis" were activated in 3 h to reprogram secondary metabolism. Collectively, these findings provided valuable insights into silkworm herbivory-induced regulatory and metabolic processes in mulberry, which might help improve the coevolution of silkworm and mulberry.


Asunto(s)
Bombyx , Morus , Animales , Morus/química , Bombyx/metabolismo , Transcriptoma , Hojas de la Planta/metabolismo , Perfilación de la Expresión Génica
20.
J Integr Plant Biol ; 64(6): 1196-1211, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35319160

RESUMEN

Southern corn leaf blight (SCLB), caused by Bipolaris maydis, is one of the most devastating diseases affecting maize production. However, only one SLCB resistance gene, conferring partial resistance, is currently known, underscoring the importance of isolating new SCLB resistance-related genes. Here, we performed a comparative proteomic analysis and identified 258 proteins showing differential abundance during the maize response to B. maydis. These proteins included an ascorbate peroxidase (Zea mays ascorbate peroxidase 1 (ZmAPX1)) encoded by a gene located within the mapping interval of a previously identified quantitative trait locus associated with SCLB resistance. ZmAPX1 overexpression resulted in lower H2 O2 accumulation and enhanced resistance against B. maydis. Jasmonic acid (JA) contents and transcript levels for JA biosynthesis and responsive genes increased in ZmAPX1-overexpressing plants infected with B. maydis, whereas Zmapx1 mutants showed the opposite effects. We further determined that low levels of H2 O2 are accompanied by an accumulation of JA that enhances SCLB resistance. These results demonstrate that ZmAPX1 positively regulates SCLB resistance by decreasing H2 O2 accumulation and activating the JA-mediated defense signaling pathway. This study identified ZmAPX1 as a potentially useful gene for increasing SCLB resistance. Furthermore, the generated data may be relevant for clarifying the functions of plant APXs.


Asunto(s)
Enfermedades de las Plantas , Zea mays , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Plantas , Proteómica , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA