RESUMEN
Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Fucosa/metabolismo , Plantones/metabolismo , Azúcares/metabolismoRESUMEN
The recent discovery of SPINDLY (SPY)-catalyzed protein O-fucosylation revealed a novel mechanism for regulating nucleocytoplasmic protein functions in plants. Genetic evidence indicates the important roles of SPY in diverse developmental and physiological processes. However, the upstream signal controlling SPY activity and the downstream substrate proteins O-fucosylated by SPY remain largely unknown. Here, we demonstrated that SPY mediates sugar-dependent growth in Arabidopsis (Arabidopsis thaliana). We further identified hundreds of O-fucosylated proteins using lectin affinity chromatography followed by mass spectrometry. All the O-fucosylation events quantified in our proteomic analyses were undetectable or dramatically decreased in the spy mutants, and thus likely catalyzed by SPY. The O-fucosylome includes mostly nuclear and cytosolic proteins. Many O-fucosylated proteins function in essential cellular processes, phytohormone signaling, and developmental programs, consistent with the genetic functions of SPY. The O-fucosylome also includes many proteins modified by O-linked N-acetylglucosamine (O-GlcNAc) and by phosphorylation downstream of the target of rapamycin (TOR) kinase, revealing the convergence of these nutrient signaling pathways on key regulatory functions such as post-transcriptional/translational regulation and phytohormone responses. Our study identified numerous targets of SPY/O-fucosylation and potential nodes of crosstalk among sugar/nutrient signaling pathways, enabling future dissection of the signaling network that mediates sugar regulation of plant growth and development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Represoras/metabolismo , Azúcares/metabolismo , ProteómicaRESUMEN
Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.
Asunto(s)
Proteínas Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biotina/química , Biotinilación , Brasinoesteroides/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/fisiologíaRESUMEN
Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.
Asunto(s)
Neoplasias Colorrectales , Infecciones por Salmonella , Proteína de Unión al GTP cdc42 , Humanos , Acetilación , Carcinogénesis , Proteína de Unión al GTP cdc42/metabolismo , Transformación Celular Neoplásica , Quinasas p21 Activadas/metabolismo , Transducción de SeñalRESUMEN
ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.
Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/metabolismo , Proteínas Virales/metabolismo , Hepatitis C/metabolismo , Mitocondrias/metabolismo , Antivirales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.
Asunto(s)
Cartílago Articular , Condrocitos , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Vía de Señalización Hippo , Osteoartritis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/etiología , Osteoartritis/patología , Osteoartritis/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.
Asunto(s)
Epidídimo , Células Epiteliales , Animales , Epidídimo/metabolismo , Epidídimo/citología , Bovinos/metabolismo , Masculino , Células Epiteliales/metabolismo , Células Epiteliales/citología , Transcriptoma , Transducción de Señal , Células Cultivadas , Maduración del Esperma/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genéticaRESUMEN
Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.
Asunto(s)
Altitud , Microbioma Gastrointestinal , Cabras , Testículo , Animales , Cabras/microbiología , Cabras/genética , Masculino , Testículo/metabolismo , Testículo/microbiología , Transcriptoma , ARN Ribosómico 16S/genética , Espermatogénesis/genéticaRESUMEN
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Asunto(s)
ADN , Elementos de la Serie de los Lantanoides , Microscopía de Fuerza Atómica , ADN/química , ADN/análisis , Humanos , Elementos de la Serie de los Lantanoides/química , Rayos X , Daño del ADN , Europio/químicaRESUMEN
The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.
Asunto(s)
Cabras , Microbiota , Animales , Cabras/metabolismo , Transcriptoma , Rumen/metabolismo , Microbiota/genética , Adaptación PsicológicaRESUMEN
Triple-negative breast cancer (TNBC) stands as the breast cancer subtype with the highest recurrence and mortality rates, with the lungs being the common site of metastasis. The pulmonary microenvironment plays a pivotal role in the colonization of disseminated tumor cells. Herein, this study highlights the crucial role of exosomal LAP-TGF-ß1, the principal form of exosomal TGF-ß1, in reshaping the pulmonary vascular niche, thereby facilitating TNBC lung metastasis. Although various strategies have been developed to block TGF-ß signaling and have advanced clinically, their significant side effects have limited their therapeutic application. This study demonstrates that in lung metastatic sites, LAP-TGF-ß1 within exosomes can remarkably reconfigure the pulmonary vascular niche at lower doses, bolstering the extravasation and colonization of TNBC cells in the lungs. Mechanistically, under the aegis of the acetyltransferase TIP60, a non-canonical KFERQ-like sequence in LAP-TGF-ß1 undergoes acetylation at the K304 site, promoting its interaction with HSP90A and subsequent transport into exosomes. Concurrent inhibition of both HSP90A and TIP60 significantly diminishes the exosomal burden of LAP-TGF-ß1, presenting a promising therapeutic avenue for TNBC lung metastasis. This study not only offers fresh insights into the molecular underpinnings of TNBC lung metastasis but also lays a foundation for innovative therapeutic strategies.
Asunto(s)
Exosomas , Neoplasias Pulmonares , Factor de Crecimiento Transformador beta1 , Neoplasias de la Mama Triple Negativas , Exosomas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Factor de Crecimiento Transformador beta1/metabolismo , Acetilación , Animales , Femenino , Ratones , Línea Celular Tumoral , Microambiente TumoralRESUMEN
BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV. However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs (large hepatitis B surface proteins) and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.
RESUMEN
BACKGROUND: Talaromyces marneffei (T. marneffei) is an opportunistic pathogen that causes endemic mycoses, which could lead to multiple organ damage. Talaromycosis is frequently disregarded as an early cautionary sign of immune system disorders in non-HIV-infected children. OBJECTIVE: We conduct a comprehensive review of the genotypes and clinical features of talaromycosis in patients with IEI to enhance clinical awareness regarding T. marneffei as a potential opportunistic pathogen in individuals with immune deficiencies. METHODS: A systematic literature review was performed by searching PubMed, Cochrane Central Register of Controlled Trials, Web of Science, EMBASE, and Scopus. Data on IEI patients with talaromycosis, including genotypes and their immunological and clinical features, were collected. RESULTS: Fifty patients with talaromycosis and IEI were included: XHIM (30.0%), STAT3-LOF deficiency (20.0%), STAT1-GOF (20.0%), IL2RG (6.00%), IFNGR1 (6.0%), IL12RB1 (4.0%), CARD9 (4.0%), COPA (4.0%), ADA (2.0%), RELB deficiency (2.0%), and NFKB2 (2.0%). Common symptoms of respiratory (43/50, 86.0%), skin (17/50, 34.0%), lymph node (31/50, 62.0%), digestive (34/50, 68.0%), and hematologic (22/50, 44.0%) systems were involved. The CT findings of the lungs may include lymph node calcification (9/30), interstitial lesions (8/30), pulmonary cavities (8/30), or specific pathogens (4/30), which could be easily misdiagnosed as tuberculosis infection. Amphotericin B (26/43), Voriconazole (24/43) and Itraconazole (22/43) were used for induction therapy. Ten patients were treated with Itraconazole sequentially and prophylaxis. 68.0% (34/50) of patients were still alive, and 4.0% (2/50) of were lost to follow-up. The disseminated T. marneffei infection resulted in the deaths of 14 individuals. CONCLUSIONS: The XHIM, STAT1-GOF, and STAT3-LOF demonstrated the highest susceptibility to talaromycosis, indicating the potential involvement of cellular immunity, IL-17 signaling, and the IL-12/IFN-γ axis in T. marneffei defense. T. marneffei infection may serve as an early warning indicator of IEI. For IEI patients suspected of T. marneffei, metagenomic next-generation sequencing (mNGS) could rapidly and effectively identify the causative pathogen. Prompt initiation of antifungal therapy is crucial for optimizing patient outcomes.
Asunto(s)
Micosis , Talaromyces , Humanos , Micosis/diagnóstico , Micosis/inmunología , Enfermedades Endémicas , Antifúngicos/uso terapéutico , Genotipo , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/diagnóstico , Infecciones Oportunistas/inmunología , Infecciones Oportunistas/diagnósticoRESUMEN
Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.
Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN , Mucina-1 , Estrés Oxidativo , Humanos , Mucina-1/metabolismo , ADN/metabolismo , ADN/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Peróxido de Hidrógeno/metabolismoRESUMEN
Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with ßAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.
Asunto(s)
Diabetes Mellitus Experimental , Síndromes de Ojo Seco , Hiperglucemia , Laceraciones , Aparato Lagrimal , Ratones , Animales , Aparato Lagrimal/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Norepinefrina , Lágrimas , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/patología , Hiperglucemia/complicaciones , Hiperglucemia/patología , Laceraciones/patología , Receptores AdrenérgicosRESUMEN
Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.
RESUMEN
African Swine Fever (ASF) is an acute, highly contagious, and lethal disease caused by the African Swine Fever Virus (ASFV), posing a severe threat to the global pig farming industry. Although live vaccines are currently available, preventing and controlling ASF remains a considerable challenge. Several factors have impeded vaccine development, including the complexity of ASFV particles and the suppressive effects of its gene-encoded proteins on the host's immune system. This article delves into the immunological responses elicited by ASFV, encompassing both innate and adaptive immunity, and examines how ASFV evades host immune defenses. Special attention is given to the current progress in the development of ASFV subunit vaccines, including protein-based vaccines, DNA vaccines, and viral vector vaccines. The advantages, challenges, and future directions of different vaccine types are discussed, offering new perspectives and insights for the future of ASFV vaccine development.
RESUMEN
The desire for healthy living has created a crucial need for portable flexible health-monitoring devices based on biomaterials. Toward this end, we report a microsphere-structured hydrogel that uses bovine serum albumin (BSA) as a dielectric layer for capacitive pressure sensors. We developed a theoretical model that describes how stacking dielectric layers of spheres affects the performance of capacitive sensors. We also prepared a prototype sensor featuring the unique microsphere structure to create capacitive sensors with high sensitivity (360.91 strain sensitivity), excellent cyclical stability, and a long service life (over 5000 stretching-compression cycles). Furthermore, the design of the hydrogel sensor allows for easy integration into fabrics to create devices such as smart wristbands, which can collect a diverse range of health data. Thus, BSA-hydrogel-based sensors not only provide safe wearable devices but also advance the performance of high-sensitivity capacitive sensors.
Asunto(s)
Hidrogeles , Microesferas , Albúmina Sérica Bovina , Dispositivos Electrónicos Vestibles , Albúmina Sérica Bovina/química , Hidrogeles/química , Humanos , Capacidad Eléctrica , Animales , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , BovinosRESUMEN
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.
RESUMEN
PURPOSE: This study aimed to investigate the effectiveness of tract-specific diffusion tensor imaging (DTI) metrics in identifying the responsible segments for neurological dysfunction in cervical spondylotic myelopathy (CSM). METHODS: The study encompassed nineteen participants diagnosed with CSM, including 10 males and 9 females. Additionally, a control group consisting of ten healthy caregivers (5 males and 5 females) were recruited with no symptoms and no compressions on magnetic resonance imaging (MRI). All participants underwent a comprehensive physical examination, MRI assessment, and DTI examination conducted by a senior chief physician. Several parameters were collected from the MR images, including the aspect ratio (defined as the anteroposterior diameter / the transverse diameter of the corresponding segment's spinal cord), transverse ratio (defined as the transverse diameter of the corresponding segment's spinal cord / the transverse diameter of the spinal cord at C2/3), and T2 high signal of the spinal cord. Furthermore, quantitative DTI metrics, such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA), were calculated using automatic region-of-interest (ROI) analysis for both whole spinal cord column and dorsal column. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic efficacy of the aspect ratio, transverse ratio, and DTI parameters. The area under the curve (AUC), sensitivity, and specificity were calculated. Intraoperative spinal cord electrophysiological examination was performed as the objective measure of spinal cord function during surgery. RESULTS: As determined by electrophysiological examination, neurological dysfunction was found in 2 patients due to C3/4 compression, in 10 patients due to C4/5 compression, in 6 patients due to C5/6 compression, and in 1 patient due to C6/7 compression. The modified Japanese Orthopedic Association scale (mJOA) was 12.71 ± 1.55 in the CSM group, with 4.87 ± 0.72 for sensory nerve function and 5.05 ± 1.35 for motor nerve function. For the control group, none of the volunteers had neurological dysfunction. T2 high signal was found at the most stenotic segment in 13 patients of the CSM group. Considering all the cervical segments, the aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) was more capable of determining the responsible segment than transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). AD, MD, and RD were significantly higher while FA was significantly lower in the responsible segment than in the irresponsible segment (P < 0.05). The AUC of DTI-Dorsal column parameters (AD, MD, RD, FA) was larger than the corresponding parameters of the DTI (Whole spinal cord). AD of DTI-Dorsal Column possessed the greatest efficacy (AUC = 0.823, sensitivity = 84.21%, specificity = 77.32%) to determine the responsible segment, larger than AD of DTI-Whole spinal cord (AUC = 0.822, P = 0.001, Sensitivity = 89.47%, Specificity = 77.32%), aspect ratio (AUC = 0.823, P = 0.001, Sensitivity = 68.42%, Specificity = 82.47%) and transverse ratio (AUC = 0.661, P = 0.027, Sensitivity = 68.42%, Specificity = 67.01%). Subgroup analysis revealed that the diagnostic efficacy of DTI and MRI parameters was influenced by cervical spine segment. CONCLUSIONS: When considering all cervical segments, AD from the DTI-Dorsal Column exhibited the most significant potential in identifying responsible segments. This potential was found to be superior to that of DTI-Whole spinal cord, aspect ratio, the most stenotic segment, T2 high signals, transverse ratio, motor nerve dysfunction, and sensory nerve dysfunction. The diagnostic effectiveness of both DTI and MRI parameters was notably influenced by the specific cervical spine segment.