Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(1-2): 249-261.e12, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328914

RESUMEN

Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.


Asunto(s)
Frutas/genética , Metaboloma , Metabolómica/métodos , Fitomejoramiento/métodos , Solanum lycopersicum/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Selección Artificial
2.
Plant Cell ; 36(6): 2272-2288, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421027

RESUMEN

A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.


Asunto(s)
Secuencia Conservada , Frutas , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , Citrullus/genética , Citrullus/crecimiento & desarrollo , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética
3.
Nucleic Acids Res ; 51(D1): D1457-D1464, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271794

RESUMEN

The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.


Asunto(s)
Cucurbitaceae , Genoma de Planta , Genómica , Sintenía , Cucurbitaceae/genética , Bases de Datos Factuales , Bases de Datos Genéticas
4.
Hum Mol Genet ; 31(10): 1588-1598, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34964466

RESUMEN

Skin deficiency of kinesin family member 3A causes disrupted skin barrier function and promotes development of atopic dermatitis (AD). It is not known how well Kif3aK14∆/∆ mice approximate the human AD transcriptome. To determine the skin transcriptomic profile of Kif3aK14∆/∆ mice and compare it with other murine AD models and human AD, we performed RNA-seq of full-thickness skin and epidermis from 3- and 8-week-old Kif3aK14∆/∆ mice and compared the differentially expressed genes (DEGs) with transcriptomic datasets from mite-induced NC/Nga, flaky tail (Tmem79ma/ma Flgft/ft), and filaggrin-mutant (Flgft/ft) mice, as well as human AD transcriptome datasets including meta-analysis derived atopic dermatitis [MADAD] and the pediatric atopic dermatitis [PAD]. We then interrogated the Kif3aK14∆/∆ skin DEGs using the LINCS-L1000 database to identify potential novel drug targets for AD treatment. We identified 471 and 901 DEGs at 3 and 8 weeks of age, respectively, in the absence of Kif3a. Kif3aK14∆/∆ mice had 3.5-4.5 times more DEGs that overlapped with human AD DEGs compared to the flaky tail and Flgft/ft mice. Further, 55%, 85% and 75% of 8-week Kif3aK14∆/∆ DEGs overlapped with the MADAD and PAD non-lesional and lesional gene lists, respectively. Kif3aK14∆/∆ mice spontaneously develop a human AD-like gene signature, which better represents pediatric non-lesional skin compared to other mouse models including flaky tail, Flgft/ft and NC/Nga. Thus, Kif3aK14∆/∆ mice may model pediatric skin that is a precursor to the development of lesions and inflammation, and hence may be a useful model to study AD pathogenesis.


Asunto(s)
Dermatitis Atópica , Animales , Niño , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Epidermis , Humanos , Cinesinas/genética , Ratones , Piel/patología , Transcriptoma/genética
5.
Small ; 20(24): e2310725, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155498

RESUMEN

Structural regulation is of primary importance in structure-property/application studies of dealloyed nanoporous metals. Three aspects are mainly considered to affect the microstructure of nanoporous metals: design of precursor alloy, choosing of dealloying parameter, and annealing treatment. Herein, through the combination of the above three strategies, the regulation of structure, composition and phase in nanoporous metals are simultaneously achieved. With a dilute Cu99Ag0.75Au0.25 as the precursor, three kinds of nanoporous films are fabricated, including bi-phase nanoporous Cu-Ag-Au (B-NP-CuAgAu), hierarchically nanoporous Au (H-NPG) and single-phase homogeneously nanoporous Au (S-NPG). In situ X-ray diffraction and ex situ characterizations are utilized to reveal the structure/composition/phase evolutions during dealloying of Cu99Ag0.75Au0.25, as well as the macroscopic changes of the dealloyed samples. Notably, the ultrafine ligaments/channels of B-NP-CuAgAu and the two-level nanoporous structure of H-NPG endow them with good broadband light absorption and excellent hydrophilicity, which contribute to their outstanding solar steam generation (SSG) performances. Specially, the B-NP-CuAgAu film shows a more efficient SSG performance with water evaporation rate of 1.49 kg m-2 h-1 and photothermal efficiency of 93.6% at 1 kW m-2, and good seawater desalination ability.

6.
Plant Biotechnol J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816932

RESUMEN

Many biotic or abiotic factors such as CPPU (N-(2-chloro-pyridin-4-yl)-N'-phenylurea), a growth regulator of numerous crops, can induce bitterness in cucurbits. In melon, cucurbitacin B is the major compound leading to bitterness. However, the molecular mechanism underlying CuB biosynthesis in response to different conditions remains unclear. Here, we identified a set of genes involved in CPPU-induced CuB biosynthesis in melon fruit and proposed CmBr gene as the major regulator. Using CRISPR/Cas9 gene editing, we confirmed CmBr's role in regulating CuB biosynthesis under CPPU treatment. We further discovered a CPPU-induced MYB-related transcription factor, CmRSM1, which specifically binds to the Myb motif within the CmBr promoter and activates its expression. Moreover, we developed an introgression line by introducing the mutated Cmbr gene into an elite variety and eliminated CPPU-induced bitterness, demonstrating its potential application in breeding. This study offers a valuable tool for breeding high-quality non-bitter melon varieties and provides new insights into the regulation of secondary metabolites under environmental stresses.

7.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33793793

RESUMEN

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Asunto(s)
Cucumis sativus/enzimología , Cucumis sativus/genética , Flores/enzimología , Flores/genética , Liasas/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Genoma de Planta , Genotipo , Glucuronidasa/metabolismo , Liasas/química , Fenotipo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Theor Appl Genet ; 137(6): 144, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809285

RESUMEN

KEY MESSAGE: A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.


Asunto(s)
Cucurbitaceae , Domesticación , Frutas , Genoma de Planta , Cucurbitaceae/genética , Cucurbitaceae/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Fenotipo , Genotipo , Sitios de Carácter Cuantitativo , Variación Estructural del Genoma , Genes de Plantas
9.
Biotechnol Lett ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066959

RESUMEN

When hypoxanthine was utilized as the activator for the salvage pathway in cAMP synthesis, xanthine oxidase would generate in quantity leading to low hypoxanthine conversion ratios and cell viability. To enhance cAMP salvage synthesis, fermentations with citrate/luteolin and hypoxanthine coupling added were conducted in a 7 L bioreactor and then multiple physiological indicators of fermentation with luteolin addition were assayed. Due to hypoxanthine feeding, cAMP productivity reached 0.066 g/(L·h) with 43.5% higher than control, however, cAMP synthesis, cell growth and glucose uptake all ceased at 50 h which was shortened by 22 h in comparison to control. The addition of citrate resulted in the cessation of fermentation at 61 h, on the contrary, owing to luteolin addition, cAMP fermentation performance was enhanced significantly during the whole fermentation period (72 h) with higher hypoxanthine conversion ratios and cAMP contents when compared with citrate and only hypoxanthine added batches. Multiple physiological indicators revealed that luteolin inhibited xanthine oxidase activity reducing hypoxanthine decomposition and ROS generation. ATP/AMP, NADH/NAD+ and NADPH/NADP+ were significantly increased especially at the late phase. Moreover, HPRT, PUP expression contents and corresponding gene transcription levels were also elevated. Luteolin could inhibit xanthine oxidase activity and further decrease hypoxanthine decomposition and ROS generation leading to higher hypoxanthine conversion and less cell damage for cAMP salvage synthesis efficiently.

10.
Nano Lett ; 23(2): 505-513, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630150

RESUMEN

Metallic actuators have increasingly shown the potential to replace conventional piezoelectric ceramics and conducting polymers. However, it is still a great challenge to achieve strain amplitudes over 4% while maintaining fast strain responses. Herein, we fabricated bulk nanoporous palladium (NP-Pd) with microsheet-array-like hierarchically nanoporous (MAHNP) structure by dealloying a eutectic Al-Pd precursor. The hierarchical structure consists of array-like microsized channels/sheets and disordered nanosized networks. The locally ordered channels play a critical role in fast mass transport while nanoligaments accumulate a large surface area for hydrogen adsorption/absorption and desorption. Therefore, the MAHNP-Pd not only obtains a fast strain rate with the maximum value close to 1 × 10-4 s-1 but also exhibits an ultrahigh strain amplitude of 4.68%, exceeding all reported values for bulk electrochemical metallic actuators to date. Additionally, the superiority of the MAHNP structure is demonstrated in transport kinetics as benchmarked with the scenario of unimodal NP-Pd.

11.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892198

RESUMEN

Carpel number (CN) is an important trait affecting the fruit size and shape of melon, which plays a crucial role in determining the overall appearance and market value. A unique non-synonymous single nucleotide polymorphism (SNP) in CmCLAVATA3 (CmCLV3) is responsible for the variation of CN in C. melo ssp. agrestis (hereafter agrestis), but it has been unclear in C. melo ssp. melo (hereafter melo). In this study, one major locus controlling the polymorphism of 5-CN (multi-CN) and 3-CN (normal-CN) in melo was identified using bulked segregant analysis (BSA-seq). This locus was then fine-mapped to an interval of 1.8 Mb on chromosome 12 using a segregating population containing 1451 progeny. CmCLV3 is still present in the candidate region. A new allele of CmCLV3, which contains five other nucleotide polymorphisms, including a non-synonymous SNP in coding sequence (CDS), except the SNP reported in agrestis, was identified in melo. A cis-trans test confirmed that the candidate gene, CmCLV3, contributes to the variation of CNs in melo. The qRT-PCR results indicate that there is no significant difference in the expression level of CmCLV3 in the apical stem between the multi-CN plants and the normal-CN plants. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding. Additionally, it suggests that melo has undergone similar genetic selection but evolved into an independent allele.


Asunto(s)
Cucumis melo , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Alelos , Mapeo Cromosómico , Cucumis melo/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo
12.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998947

RESUMEN

Rechargeable potassium ion batteries have long been regarded as one alternative to conventional lithium ion batteries because of their resource sustainability and cost advantages. However, the compatibility between anodes and electrolytes remains to be resolved, impeding their commercial adoption. In this work, the K-ion storage properties of Bi nanoparticles encapsulated in N-doped carbon nanocomposites have been examined in two typical electrolyte solutions, which show a significant effect on potassium insertion/removal processes. In a KFSI-based electrolyte, the N-C@Bi nanocomposites exhibit a high specific capacity of 255.2 mAh g-1 at 0.5 A g-1, which remains at 245.6 mAh g-1 after 50 cycles, corresponding to a high capacity retention rate of 96.24%. In a KPF6-based electrolyte, the N-C@Bi nanocomposites show a specific capacity of 209.0 mAh g-1, which remains at 71.5 mAh g-1 after 50 cycles, corresponding to an inferior capacity retention rate of only 34.21%. Post-investigations reveal the formation of a KF interphase derived from salt decomposition and an intact rod-like morphology after cycling in K2 electrolytes, which are responsible for better K-ion storage properties.

13.
Small ; 19(4): e2205681, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36420916

RESUMEN

Potassium- and sodium-ion batteries (PIBs and SIBs) have great potential as the next-generation energy application owing to the natural abundance of K and Na. Antimony (Sb) is a suitable alloying-type anode for PIBs and SIBs due to its high theoretical capacity and proper operation voltage; yet, the severe volume variation remains a challenge. Herein, a preparation of N-doped carbon-wrapped Sb nanoparticles (L-Sb/NC) using pulsed laser ablation and polydopamine coating techniques, is reported. As the anode for PIB and SIB, the L-Sb/NC delivers superior rate capabilities and excellent cycle stabilities (442.2 and 390.5 mA h g-1 after 250 cycles with the capacity decay of 0.037% and 0.038% per cycle) at the current densities of 0.5 and 1.0 A g-1 , respectively. Operando X-ray diffraction reveals the facilitated and stable potassiation and sodiation mechanisms of L-Sb/NC enabled by its optimal core-shell structure. Furthermore, the SIB full cell fabricated with L-Sb/NC and Na3 V2 (PO4 )2 F3 shows outstanding electrochemical performances, demonstrating its practical energy storage application.

14.
J Recept Signal Transduct Res ; 43(2): 62-71, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37330920

RESUMEN

Oxidative stress, inflammation and apoptosis are important pathogenic factors of diabetic retinopathy (DR). In the current study, we aimed to evaluate the potential role of Rhein, a natural anthraquinone compound found in rhubarb, in high glucose (HG)-induced Müller cells (MIO-M1). Cell Counting Kit­8 assay, TUNEL assay, Western blot analysis, Reverse transcription quantitative polymerase chain reaction (RT-qPCR), and ELISA were conducted to assess the effects of Rhein on Müller cells. Additionally, the EX-527, an Sirt1 inhibitor, was used to study whether the effects of Rhein, on HG-induced Müller cells were mediated by activation of the Sirt1 signaling pathway. Our data showed that Rhein improved cell viability of HG-induced Müller cells. Rhein reduced the ROS and MDA production and increased the activities of SOD and CAT in Müller cells in response to HG stimulation. Rhein decreased the production of VEGF, IL-1ß, IL-6 and TNF-α. Moreover, Rhein attenuated HG-induced apoptosis, evidenced by increase in Bcl-2 level and decreases in the Bax, caspase-3 expression. It was also found that EX-527 counteracted Rhein-mediated anti-inflammatory, antioxidant and anti-apoptosis effects on Müller cells. The protein levels of p-AMPK and PGC-1α were also upregulated by Rhein. In conclusion, these findings support that Rhein may ameliorate HG-induced inflammation, oxidative stress, apoptosis and protect against mitochondrial dysfunction by the activation of the AMPK/Sirt1/PGC-1α signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células Ependimogliales , Humanos , Células Ependimogliales/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Estrés Oxidativo , Antraquinonas/farmacología , Glucosa/toxicidad , Glucosa/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética
15.
Environ Res ; 225: 115596, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871946

RESUMEN

A linked river-irrigation-lake system exhibits intricate and dynamic hydrochemical variations, closely related to changes in natural conditions and anthropogenic activities. However, little is known about the sources, migration and transformation of hydrochemical composition, and the driving mechanisms, in such systems. In this study, the hydrochemical characteristics and processes in the linked Yellow River-Hetao Irrigation District-Lake Ulansuhai system were studied, based on a comprehensive hydrochemical and stable isotope analysis of water samples collected during spring, summer, and autumn. The results showed that the water bodies in the system were weakly alkaline with a pH range of 8.05-8.49. The concentrations of hydrochemical ions showed an increasing trend in the water flow direction. Total dissolved solids (TDS) were less than 1000 mg/L (freshwater) in the Yellow River and the irrigation canals, and increased to more than 1800 mg/L (saltwater) in the drainage ditches and Lake Ulansuhai. The dominant hydrochemical types varied from SO4•Cl-Ca•Mg and HCO3-Ca•Mg types in the Yellow River and the irrigation canals to Cl-Na type in the drainage ditches and Lake Ulansuhai. The ion concentrations in the Yellow River, the irrigation canals, and the drainage ditches were highest during summer, while ion concentrations in Lake Ulansuhai were highest during spring. The hydrochemistry of the Yellow River and the irrigation canals was mainly affected by rock weathering, while evaporation was the principal controlling factor in the drainage ditches and Lake Ulansuhai. Water-rock interactions including the dissolution of evaporites and silicates, the precipitation of carbonates, and cation exchange were the main sources of hydrochemical compositions in this system. Anthropogenic inputs had a low impact on the hydrochemistry. Therefore, greater attention should be paid in future to hydrochemical variations, especially salt ions, in the management of linked river-irrigation-lake system water resources.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Lagos , Ríos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Agua , Agua Subterránea/análisis , China
16.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37408148

RESUMEN

The mechanism of stochastic factors in wind load on iced transmission line galloping has attracted widespread attention. In this paper, the random part of wind load is simulated by Gaussian white noise, and a galloping model of the iced transmission line excited by stochastic wind is established. The path integration method based on the Gauss-Legendre formula and short-time approximation is used to solve the steady-state probability density function of the system and the evolution of the transient probability density. The resonance response of the system is considered when the fluctuating wind acts. Meanwhile, through path integration, the stability of galloping motion is evaluated based on the first passage theory. Comparing with the Monte Carlo simulation, the effectiveness of the proposed method is verified. It turns out that the large external excitation intensity and the small natural frequency are not conducive to the stability of iced transmission line galloping.

17.
Clin Oral Investig ; 27(6): 2843-2849, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36749410

RESUMEN

OBJECTIVES: The purpose of this study was to investigate whether there is a causal relationship between periodontitis and breast cancer by Mendelian randomization analysis. MATERIALS AND METHODS: We performed a two-sample bidirectional Mendelian randomization (MR) analysis using publicly released genome-wide association studies (GWAS) statistics. The inverse-variance weighted (IVW) method was used as the primary analysis. We applied complementary methods, including weighted median, weighted mode, simple mode, MR-Egger regression, and MR-pleiotropy residual sum and outlier (MR-PRESSO) to detect and correct for the effect of horizontal pleiotropy. RESULTS: IVW MR analysis showed no effect of periodontitis on breast cancer (IVW OR=0.99, P =0.14). Similarly, no significant causal relationship between breast cancer and periodontitis was found in reverse MR analysis (IVW OR=0.95, P =0.83). The results of MR-Egger regression, weighted median, and weighted mode methods were consistent with those of the IVW method. Based on sensitivity analyses, horizontal pleiotropy is unlikely to distort causal estimates. CONCLUSIONS: Although observational studies have reported an association between periodontitis and breast cancer, the results of our MR analysis do not support a causal relationship between periodontitis and breast cancer. CLINICAL RELEVANCE: Mendelian randomization study can more clearly analyze the causal relationship between periodontitis and breast cancer, in order to provide a certain reference for clinicians and deepen the understanding of the relationship between periodontitis and breast cancer, to explore more possible associations between periodontitis and systemic diseases.


Asunto(s)
Neoplasias , Periodontitis , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Periodontitis/genética
18.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772732

RESUMEN

In view of the difficulties regarding that airborne navigation equipment relies on imports and the expensive domestic high-precision navigation equipment in the manufacturing field of Chinese navigable aircraft, a dual-antenna GNSS (global navigation satellite system)/MINS (micro-inertial navigation system) integrated navigation system was developed to implement high-precision and high-reliability airborne integrated navigation equipment. First, the state equation and measurement equation of the system were established based on the classical discrete Kalman filter principle. Second, according to the characteristics of the MEMS (micro-electric-mechanical system), the IMU (inertial measurement unit) is not sensitive to Earth rotation to realize self-alignment; the magnetometer, accelerometer and dual-antenna GNSS are utilized for reliable attitude initial alignment. Finally, flight status identification was implemented by the different satellite data, accelerometer and gyroscope parameters of the aircraft in different states. The test results shown that the RMS (root mean square) of the pitch angle and roll angle error of the testing system are less than 0.05° and the heading angle error RMS is less than 0.15° under the indoor static condition. A UAV flight test was carried out to test the navigation effect of the equipment upon aircraft take-off, climbing, turning, cruising and other states, and to verify the effectiveness of the system algorithm.

19.
J Environ Manage ; 344: 118375, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356331

RESUMEN

Soil nitrogen (N) is an essential nutrient for tree growth, and excessive N is a source of pollution. This paper aims to define the effects of plant diversity and forest structure on various aspects of soil N cycling. Herein, we collected soils from 720 plots to measure total N content (TN), alkali-hydrolyzed N (AN), nitrate N (NO3--N), ammonium N (NH4+-N) in a 7.2 ha experimental forest in northeast China. Four plant diversity indices, seven structural metrics, four soil properties, and in situ N2O efflux were also measured. We found that: 1) high tree diversity had 1.3-1.4-fold NO3--N, 1.1-fold NH4+-N, and 1.5-1.8-fold N2O efflux (p < 0.05). 2) Tree growth decreased soil TN, AN, and NO3--N by more than 13%, and tree mixing and un-uniform distribution increased TN, AN, and NH4+-N by 11-22%. 3) Soil organic carbon (SOC) explained 34.3% of the N variations, followed by soil water content (1.5%), tree diameter (1.5%) and pH (1%), and soil bulk density (0.5%). SOC had the most robust linear relations to TN (R2 = 0.59) and AN (R2 = 0.5). 4) The partial least squares path model revealed that the tree diversity directly increased NO3--N, NH4+-N, and N2O efflux, and they were strengthened indirectly from soil properties by 1%-4%. The effects of tree size-density (-0.24) and spatial structure (0.16) were mainly achieved via their soil interaction and thus indirectly decreased NH4+-N, AN, and TN. Overall, high tree diversity forests improved soil N availability and N2O efflux, and un-uniform spatial tree assemblages could partially balance the soil N consumed by tree growth. Our data support soil N management in high northern hemisphere temperate forests from tree diversity and forest structural regulations.


Asunto(s)
Suelo , Árboles , Suelo/química , Carbono , Bosques , Nitrógeno/análisis , China
20.
J Environ Manage ; 347: 119093, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783080

RESUMEN

Eutrophic lakes are a major source of the atmospheric greenhouse gas methane (CH4), and CH4 ebullition emissions from inland lakes have important implications for the carbon cycle. However, the spatio-temporal heterogeneity of CH4 ebullition emission and its influencing factors in shallow eutrophic lakes of arid and semi-arid regions remain unclear. This study aimed to determine the mechanism of CH4 emission via eutrophication in Lake Ulansuhai, a large shallow eutrophic lake in a semi-arid region of China.To this end, monthly field surveys were conducted from May to October 2021, and gas chromatography was applied using the headspace equilibrium technique with an inverted funnel arrangement. The total CH4 fluxes ranged from 0.102 mmol m-2 d-1 to 59.296 mmol m-2 d-1 with an average value of 4.984 ± 1.82 mmol m-2 d-1. CH4 ebullition emissions showed significant temporal and spatial variations. The highest CH4 ebullition emission was observed in July with a grand mean of 9.299 mmol m-2 d-1, and the lowest CH4 ebullition emissions occurred in October with an average of 0.235 mmol m-2 d-1. Among seven sites (S1-S7), the maximum (3.657 mmol m-2 d-1) and minimum (1.297 mmol m-2 d-1). CH4 ebullition emissions were observed at S2 and S7, respectively. As the main route of CH4 emission to the atmosphere in Lake Ulansuhai, the CH4 ebullition flux during May to October accounted for 69% of the total CH4 flux. Statistical analysis showed that CH4 ebullition was positively correlated with temperature (R = 0.391, P < 0.01) and negatively correlated with air pressure (R = 0.286, P < 0.00). Temperature and air pressure were found to strongly regulate the production and oxidation of CH4. Moreover, nutritional status indicators such as TP and NH4+-N significantly affect CH4 ebullition emissions (R = 0.232, P < 0.01; R = -0.241, P < 0.01). This study reveals the influencing factors of CH4 ebullition emission in Lake Ulansuhai, and provides theoretical reference and data support for carbon emission from eutrophic lakes. Nevertheless, research on eutrophic shallow lakes needs to be further strengthened. Future research should incorporate improved flux measurement techniques with process-based models to improve the accuracy from regional to large-scale estimation of CH4 emissions and clarify the carbon budget of aquatic ecosystems. In this manner, the understanding and predictability of CH4 ebullition emission from shallow lakes can be improved.


Asunto(s)
Lagos , Metano , Metano/análisis , Ecosistema , China , Carbono/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA