Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2213332120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094167

RESUMEN

Among the current five Variants of Concern, infections caused by SARS-CoV-2 B.1.617.2 (Delta) variant are often associated with the greatest severity. Despite recent advances on the molecular basis of elevated pathogenicity using recombinant proteins, the architecture of intact Delta virions remains veiled. Moreover, pieces of molecular evidence for the detailed mechanism of S-mediated membrane fusion are missing. Here, we showed the pleomorphic nature of Delta virions from electron beam inactivated samples and reported the in situ structure and distribution of S on the authentic Delta variant. We also captured the virus-virus fusion events, which provided pieces of structural evidence for Delta's attenuated dependency on cellular factors for fusion activation, and proposed a model of S-mediated membrane fusion. Besides, site-specific glycan analysis revealed increased oligomannose-type glycosylation of native Delta S than that of the WT S. Together, these results disclose distinctive factors of Delta being the most virulent SARS-CoV-2 variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Fusión de Membrana , Glicosilación , Glicoproteína de la Espiga del Coronavirus
2.
Proc Natl Acad Sci U S A ; 120(52): e2305684120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113258

RESUMEN

Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.


Asunto(s)
Neoplasias del Colon , Factores de Intercambio de Guanina Nucleótido , Humanos , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Invasividad Neoplásica/patología , Metilación , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887117

RESUMEN

The objective of this study was to investigate the protective effects and potential molecular mechanisms of procyanidin B2 (PB2) in MAC-T (mammary alveolar cells-large T antigen) cells during heat stress (HS). The MAC-T cells were divided into three treatment groups: control (37 °C), HS (42 °C), and PB2 + HS (42 °C). Compared with MAC-T cells that were consistently cultured at 37 °C, acute HS treatment remarkably decreased cell viability, reduced activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and elevated intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) was activated and translocated to the nucleus, in accompaniment with upregulation of Nrf2, heme oxygenase 1 (HO-1), thioredoxin reductase 1 (Txnrd1), and heat shock protein 70 (HSP70). In parallel, both mRNA transcript and actual protein secretion of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), were increased by heat stress. Pretreatment of MAC-T cells with 0~25 µM PB2 alleviated the decline of cell viability by HS in a dose-dependent fashion and protected cells against HS-induced oxidative stress, as evidenced by significantly improved CAT, SOD, and T-AOC activity, as well as with decreased MDA and ROS generation. Furthermore, PB2 further activated the Nrf2 signaling pathway and reversed the inflammatory response induced by HS. Silencing of Nrf2 by si-Nrf2 transfection not only exacerbated HS-induced cell death and provoked oxidative stress and the inflammatory response, but also greatly abolished the cytoprotective effects under HS of PB2. In summary, PB2 protected MAC-T cells against HS-induced cell death, oxidative stress, and inflammatory response, partially by operating at the Nrf2 signal pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Biflavonoides , Catequina , Bovinos , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proantocianidinas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
4.
J Integr Plant Biol ; 58(8): 724-36, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26822341

RESUMEN

Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.


Asunto(s)
Expresión Génica , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Zea mays/enzimología , Zea mays/genética
5.
Rice (N Y) ; 17(1): 41, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916708

RESUMEN

Great yield-enhancing prospects of autotetraploid rice was restricted by various polyploidy-induced reproductive dysfunction. To surmount these challenges, our group has generated a series of valuable fertile tetraploid lines (denoted as neo-tetraploid rice) through 20-year efforts. With this context, a G-type lectin receptor-like kinase, OsNRFG6, was identified as a pivotal factor associated with reproductive regulation in neo-tetraploid rice. Nevertheless, it is still elusive about a comprehensive understanding of its precise functional roles and underlying molecular mechanisms during reproduction of neo-tetraploid rice. Here, we demonstrated that OsNRFG6 executed a constitutive expression pattern and encoded proteins localizing in perinucleus and endoplasmic reticulum. Subsequently, four independent mutant lines of OsNRFG6 within neo-tetraploid rice background were further identified, all displaying low seed-setting rate due to abortive embryo sacs and defective double fertilization. RNA-seq and RT-qPCR revealed a significant down-regulation of OsNRFG6 and female reproductive genes such as OsMEL1 and LOG in ovaries prior to and post-fertilization, attributing this effect to OsNRFG6 mutation. Furthermore, through yeast-two hybrids, bimolecular fluorescence complementation assays, and luciferase complementation imaging assays, it was determined that OsNRFG6 could interact with itself and two female reproductive proteins (LOG and OsDES1) to form protein complexes. These results elucidate the reproductive functions and molecular pathway governed by OsNRFG6 in regulating fertility of neo-tetraploid rice, offering insights into molecular understanding of fertility improvement in polyploid rice.

6.
ACS Nano ; 18(27): 17439-17468, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934250

RESUMEN

Lithium metal batteries (LMBs), with high energy densities, are strong contenders for the next generation of energy storage systems. Nevertheless, the unregulated growth of lithium dendrites and the unstable solid electrolyte interphase (SEI) significantly hamper their cycling efficiency and raise serious safety concerns, rendering LMBs unfeasible for real-world implementation. Covalent organic frameworks (COFs) and their derivatives have emerged as multifunctional materials with significant potential for addressing the inherent problems of the anode electrode of the lithium metal. This potential stems from their abundant metal-affine functional groups, internal channels, and widely tunable architecture. The original COFs, their derivatives, and COF-based composites can effectively guide the uniform deposition of lithium ions by enhancing conductivity, transport efficiency, and mechanical strength, thereby mitigating the issue of lithium dendrite growth. This review provides a comprehensive analysis of COF-based and derived materials employed for mitigating the challenges posed by lithium dendrites in LMB. Additionally, we present prospects and recommendations for the design and engineering of materials and architectures that can render LMBs feasible for practical applications.

7.
ACS Nano ; 18(1): 28-66, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117556

RESUMEN

Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.

8.
Oncogene ; 43(21): 1581-1593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565942

RESUMEN

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Mitofagia , Ubiquitina-Proteína Ligasas , Ubiquitinación , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Mitofagia/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ratones , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
9.
Environ Pollut ; 322: 121195, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736558

RESUMEN

The purpose of this study was to investigate the effect and mechanism of blue light irradiation on bovine subcutaneous preadipocytes. In this study, preadipocytes were divided into dark group (control) and blue light group. Results show that blue light exposure time-dependently reduced the viability of preadipocytes and induced mitochondrial damage, in accompaniment with the accumulation of intracellular reactive oxygen species (ROS). Meanwhile, blue light caused oxidative stress, as evidenced by the increased MDA level, the reduced T-AOC contents, as well as the decreased activities of antioxidant enzymes. Additionally, blue light treatment induced apoptosis and G2/M phase arrest via Bcl-2/Bax/cleaved caspase-3 pathway and P53/GADD45 pathway, respectively. Protein expressions of LC3-II/LC3-I and P62 were up-regulated under blue light exposure, indicating blue light initiated autophagy but impeded autophagic degradation. Moreover, blue light caused an increase in the secretion of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6). Pretreatment with N-acetylcysteine (NAC), a potent ROS scavenger, restored the loss of mitochondrial membrane potential (Δψ) and reduced excess ROS. Additionally, the above negative effects of blue light on cells were alleviated after NAC administration. In conclusion, this study demonstrates blue light induces cellular ROS overproduction and Δψ depolarization, resulting in the decrease of cell viability and the activation of apoptosis, autophagy, and inflammation, providing a reference for the application of blue light in the regulation of fat cells in the future.


Asunto(s)
Apoptosis , Estrés Oxidativo , Animales , Bovinos , Especies Reactivas de Oxígeno/metabolismo , Luz , Antioxidantes/metabolismo , Autofagia
10.
Front Plant Sci ; 14: 1229870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528969

RESUMEN

We aimed to investigate the genetic defects related to pollen development and infertility in NY2, a novel tetraploid rice germplasm known as Neo-tetraploid rice. This rice variety was created through the crossbreeding and selective breeding of various autotetraploid rice lines and has previously shown high fertility. Our previous research has revealed that the NY2 gene, encoding a eukaryotic translation initiation factor 3 subunit E, regulates pollen fertility. However, the underlying mechanism behind this fertility is yet to be understood. To shed light on this matter, we performed a combined cytological and transcriptome analysis of the NY2 gene. Cytological analysis indicated that ny2 underwent abnormal tapetal cells, microspore, and middle layer development, which led to pollen abortion and ultimately to male sterility. Genetic analysis revealed that the F1 plants showed normal fertility and an obvious advantage for seed setting compared to ny2. Global gene expression analysis in ny2 revealed a total of 7545 genes were detected at the meiosis stage, and 3925 and 3620 displayed upregulation and downregulation, respectively. The genes were significantly enriched for the gene ontology (GO) term "carbohydrate metabolic process. Moreover, 9 genes related to tapetum or pollen fertility showed down-regulation, such as OsABCG26 (ATP Binding Cassette G26), TMS9-1 (Thermosensitive Male Sterility), EAT1 (Programmed cell death regulatory), KIN14M (Kinesin Motor), OsMT1a (Metallothionein), and OsSTRL2 (Atypical strictosidine synthase), which were validated by qRT-PCR. Further analyses of DEGs identified nine down-regulated transcription factor genes related to pollen development. NY2 is an important regulator of the development of tapetum and microspore. The regulatory gene network described in this study may offer important understandings into the molecular processes that underlie fertility control in tetraploid rice.

11.
Adv Sci (Weinh) ; 10(36): e2303484, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946697

RESUMEN

Ferroptosis, which is caused by iron-dependent accumulation of lipid peroxides, is an emerging form of regulated cell death and is considered a potential target for cancer therapy. However, the regulatory mechanisms underlying ferroptosis remain unclear. This study defines a distinctive role of ferroptosis. Inhibition of CARM1 can increase the sensitivity of tumor cells to ferroptosis inducers in vitro and in vivo. Mechanistically, it is found that ACSL4 is methylated by CARM1 at arginine 339 (R339). Furthermore, ACSL4 R339 methylation promotes RNF25 binding to ACSL4, which contributes to the ubiquitylation of ACSL4. The blockade of CARM1 facilitates ferroptosis and effectively enhances ferroptosis-associated cancer immunotherapy. Overall, this study demonstrates that CARM1 is a critical contributor to ferroptosis resistance and highlights CARM1 as a candidate therapeutic target for improving the effects of ferroptosis-based antitumor therapy.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Neoplasias Colorrectales/genética
12.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37389864

RESUMEN

Autophagy is a conserved and tightly regulated intracellular quality control pathway. ULK is a key kinase in autophagy initiation, but whether ULK kinase activity also participates in the late stages of autophagy remains unknown. Here, we found that the autophagosomal SNARE protein, STX17, is phosphorylated by ULK at residue S289, beyond which it localizes specifically to autophagosomes. Inhibition of STX17 phosphorylation prevents such autophagosome localization. FLNA was then identified as a linker between ATG8 family proteins (ATG8s) and STX17 with essential involvement in STX17 recruitment to autophagosomes. Phosphorylation of STX17 S289 promotes its interaction with FLNA, activating its recruitment to autophagosomes and facilitating autophagosome-lysosome fusion. Disease-causative mutations around the ATG8s- and STX17-binding regions of FLNA disrupt its interactions with ATG8s and STX17, inhibiting STX17 recruitment and autophagosome-lysosome fusion. Cumulatively, our study reveals an unexpected role of ULK in autophagosome maturation, uncovers its regulatory mechanism in STX17 recruitment, and highlights a potential association between autophagy and FLNA.


Asunto(s)
Autofagosomas , Filaminas , Macroautofagia , Proteínas Qa-SNARE , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Fosforilación , Humanos , Proteínas Qa-SNARE/metabolismo , Filaminas/metabolismo
13.
Cell Mol Immunol ; 20(11): 1339-1351, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737309

RESUMEN

Inhibitory immune receptors set thresholds for immune cell activation, and their deficiency predisposes a person to autoimmune responses. However, the agonists of inhibitory immune receptors remain largely unknown, representing untapped sources of treatments for autoimmune diseases. Here, we show that V-set and transmembrane domain-containing 1 (VSTM1) is an inhibitory receptor and that its binding by the competent ligand soluble galectin-1 (Gal1) is essential for maintaining neutrophil viability mediated by downregulated reactive oxygen species production. However, in patients with systemic lupus erythematosus (SLE), circulating Gal1 is oxidized and cannot be recognized by VSTM1, leading to increased intracellular reactive oxygen species levels and reduced neutrophil viability. Dysregulated neutrophil function or death contributes significantly to the pathogenesis of SLE by providing danger molecules and autoantigens that drive the production of inflammatory cytokines and the activation of autoreactive lymphocytes. Interestingly, serum levels of glutathione, an antioxidant able to convert oxidized Gal1 to its reduced form, were negatively correlated with SLE disease activity. Taken together, our findings reveal failed inhibitory Gal1/VSTM1 pathway activation in patients with SLE and provide important insights for the development of effective targeted therapies.


Asunto(s)
Lupus Eritematoso Sistémico , Neutrófilos , Humanos , Galectina 1 , Especies Reactivas de Oxígeno/metabolismo
14.
Oncogene ; 42(19): 1572-1584, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991117

RESUMEN

Perturbations in transforming growth factor-ß (TGF-ß) signaling can lead to a plethora of diseases, including cancer. Mutations and posttranslational modifications (PTMs) of the partner of SMAD complexes contribute to the dysregulation of TGF-ß signaling. Here, we reported a PTM of SMAD4, R361 methylation, that was critical for SMAD complexes formation and TGF-ß signaling activation. Through mass spectrometric, co-immunoprecipitation (Co-IP) and immunofluorescent (IF) assays, we found that oncogene protein arginine methyltransferase 5 (PRMT5) interacted with SMAD4 under TGF-ß1 treatment. Mechanically, PRMT5 triggered SMAD4 methylation at R361 and induced SMAD complexes formation and nuclear import. Furthermore, we emphasized that PRMT5 interacting and methylating SMAD4 was required for TGF-ß1-induced epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis, and SMAD4 R361 mutation diminished PRMT5 and TGF-ß1-induced metastasis. In addition, highly expressed PRMT5 or high level of SMAD4 R361 methylation indicated worse outcomes in clinical specimens analysis. Collectively, our study highlights the critical interaction of PRMT5 and SMAD4 and the roles of SMAD4 R361 methylation for controlling TGF-ß signaling during metastasis. We provided a new insight for SMAD4 activation. And this study indicated that blocking PRMT5-SMAD4 signaling might be an effective targeting strategy in SMAD4 wild-type CRC.


Asunto(s)
Neoplasias Colorrectales , Proteína-Arginina N-Metiltransferasas , Proteína Smad4 , Factor de Crecimiento Transformador beta , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Metástasis de la Neoplasia
15.
Oncogene ; 41(25): 3433-3444, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35589951

RESUMEN

RIO Kinase 1 (RIOK1) is involved in various pathologies, including cancer. However, the role of RIOK1 in radioresistance of colorectal cancer (CRC) remains largely unknown. In this study, we reported that RIOK1 was overexpressed in rectal cancer tissue with weaker tumor regression after neoadjuvant chemoradiotherapy (neoCRT). Moreover, higher RIOK1 expression predicted a poor prognosis in patients with rectal cancer. Blockade of RIOK1 using Toyocamycin, a pharmacological inhibitor of RIOK1, or by knocking down its expression, decreased the resistance of CRC cells to radiotherapy in vitro and in vivo. A mechanistic study revealed that RIOK1 regulates radioresistance by suppressing the p53 signaling pathway. Furthermore, we found that RIOK1 and Ras-GAP SH3 domain binding protein 2 (G3BP2) interact with each other. RIOK1 phosphorylates G3BP2 at Thr226, which increases the activity of G3BP2. RIOK1-mediated phosphorylation of G3BP2 facilitated ubiquitination of p53 by murine double minute 2 protein (MDM2). Altogether, our study revealed the clinical significance of RIOK1 in CRC, and therapies targeting RIOK1 might alleviate the CRC tumor burden in patients.


Asunto(s)
Neoplasias Colorrectales , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias del Recto , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Humanos , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
Saudi J Biol Sci ; 28(4): 2146-2154, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33911931

RESUMEN

To investigate the correlation between serum renin-angiotensin system (RAS) level and Symptoms of anxiety and depression in Parkinson disease patients (PD). A number of 90 PD patients (47 males and 43 females) were collected on an empty stomach 12 h after stopping taking anti-PD medicines. ELISA has been found in Serum RAS ((Ang) I, Ang II, Ang (1-7), Angiotensin converting enzyme (ACE), ACE2). Depression scale (HAMD) and Anxiety scale (HAMA) in Hamilton are used for the assessment of signs of depression and anxiety. The 90 patients were diagnosed with moderate depression (HAMD score 8 ~ 19); in 32 of those (35.56 percent), and 12 (13.33%) were diagnosed as moderate and severe depression (HAMD score ≥ 20). 20 cases (22.22%) were diagnosed as possible anxiety disorder (HAMA score 7 ~ 13) and 16 cases (17.78%) as definite anxiety disorder (HAMA score ≥ 14). The association of serum Ang I, Ang II and Ang (1-7) with HAMD (r= - 0.820, P < 0.001; r = -0.846, P < 0.001) showed negative linkage with HAMD (r = -0.887, P < 0.003; P < 0.001; Negative correlation of the settings with HAMA (r = -0.850, P < 0.001; r = -0.887, P < 0.001; r = 0.003; r = 0.001, P < 0.001, Fig. 2, Fig. 3); The HAMD score and the HAMA score (all P > 0.05) were not associated to the serum ACE and ACE2. The serum Ang I, Ang II, and Ang (1-7) were found to be adversely associated with HAMD score (r = 0.826, P < 0,001; r = -0.818, p> >0,001; r = -0.876, P < 0,001; P = 0,001) P < 0,001; And have been negatively correlated (r = 0.870, Fig. 1, Fig. 2, Fig. 3) with AMA-scores (r = -0.876, P < 0.001, Table 1, Fig. 3), R = -0.862, P > 0.001; The HAMD score and the HAMA score (all P > 0.05) were not correlated to the serum ACE and ACE2. Finally, in PD patients, non-engine signs, including depression and anxiety, are normal. Thus, Serum levels Ang I, Ang II and Ang (1-7) were substantially decreased in female and male patients and associated with symptoms of depression and anxiety, ACE and ACE2 levels have not been attributed to signs of depression and anxiety. Serum Ang I, Ang II, and Ang (1-7) are important markers of depression and anxiety prevention and diagnosis in patients with DP.

17.
Free Radic Biol Med ; 175: 206-215, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506903

RESUMEN

Flavonoids are natural polyphenolic compounds with a diverse array of biological activities and health-promoting effects. Recent studies have found that 4,4'-dimethoxychalcone (DMC) promoted longevity via autophagy; however, its targets are currently unknown. Herein, we employed an unbiased thermal proteome profiling (TPP) method and identified multiple targets of DMC, including ALDH1A3, ALDH2, and PTGES2. We further determined the dissociation constant (Kd) of DMC and ALDH1A3 to be 2.8 µM using microscale thermophoresis (MST) analysis, which indicated that DMC inhibited ALDH1A3 activity and aggravated cellular oxidative stress. DMC treatment significantly increased cellular reactive oxygen species (ROS) production and inhibited cancer cell growth. Quantitative proteomic analysis showed that DMC upregulated proteins associated with stress-responses and downregulated proteins associated with cell cycle progression, and this was confirmed using cell cycle analysis. Taken together, we showed that TPP is an effective tool with which to identify flavonoid targets and set a precedent for deciphering flavonoid function in the future. We have demonstrated that DMC inhibited cell proliferation via ROS-induced cell cycle arrest and is an anti-proliferative agent in cancer treatment.


Asunto(s)
Flavonoides , Proteómica , Apoptosis , Proliferación Celular , Flavonoides/farmacología , Estrés Oxidativo , Oxidorreductasas , Especies Reactivas de Oxígeno
18.
Oncogene ; 40(16): 2952-2967, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742125

RESUMEN

Tumor angiogenesis plays vital roles in tumorigenesis and development; regulatory mechanism of angiogenesis is still not been fully elucidated. NSD2, a histone methyltransferase catalyzing di-methylation of histone H3 at lysine 36, has been proved a critical molecule in proliferation, metastasis, and tumorigenesis. But its role in tumor angiogenesis remains unknown. Here we demonstrated that NSD2 promoted tumor angiogenesis in vitro and in vivo. Furthermore, we confirmed that the angiogenic function of NSD2 was mediated by STAT3. Momentously, we found that NSD2 promoted the methylation and activation of STAT3. In addition, mass spectrometry and site-directed mutagenesis assays revealed that NSD2 methylated STAT3 at lysine 163 (K163). Meanwhile, K to R mutant at K163 of STAT3 attenuated the activation and angiogenic function of STAT3. Taken together, we conclude that methylation of STAT3 catalyzed by NSD2 promotes the activation of STAT3 pathway and enhances the ability of tumor angiogenesis. Our findings investigate a NSD2-dependent methylation-phosphorylation regulation pattern of STAT3 and reveal that NSD2/STAT3/VEGFA axis might be a potential target for tumor therapy.


Asunto(s)
Neoplasias del Colon/irrigación sanguínea , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Carcinogénesis , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Xenoinjertos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Metilación , Ratones , Ratones Desnudos , Neovascularización Patológica/metabolismo
19.
J Alzheimers Dis ; 76(4): 1255-1265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280102

RESUMEN

Many Alzheimer's disease (AD) patients suffer from persistent neuropathic pain (NP), which is mediated, at least partially, but microglia. Nevertheless, the exact underlying mechanism is unknown. Moreover, a clinically translatable approach through modulating microglia for treating AD-associated NP is not available. Here, in a doxycycline-induced mouse model (rTg4510) for AD, we showed development of NP. We found that the total number of microglia in the CA3 region was not increased, but polarized to pro-inflammatory M1-like phenotype, with concomitant increases in production and secretion of pro-inflammatory cytokines. To examine whether this microglia polarization plays an essential role in the AD-associated NP, we generated an adeno-associated virus (AAV) serotype PHP.B (capable of crossing the blood-brain barrier) carrying shRNA for DNA methyltransferase 1 (DNMT1) under a microglia-specific TMEM119 promoter (AAV-pTMEM119-shDNMT1), which specifically targeted microglia and induced a M2-like polarization in vitro and in vivo in doxycycline-treated rTg4510 mice. Intravenous infusion of AAV-pTMEM119-shDNMT1 induced M2-polarization of microglia and attenuated both AD-associated behavior impairment but also NP in the doxycycline-treated rTg4510 mice. Thus, our data suggest that AD-associated NP may be treated through M2-polarization of microglia.


Asunto(s)
Enfermedad de Alzheimer/terapia , Citocinas/metabolismo , Microglía/citología , Neuralgia/terapia , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Animales , Humanos , Ratones , Neuralgia/complicaciones , Neuralgia/metabolismo , Fenotipo , Transducción de Señal/fisiología
20.
Kaohsiung J Med Sci ; 36(1): 27-34, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631531

RESUMEN

Multiple microRNAs (miRs) have also been implicated in ischemic brain injury. This research intended to probe the regulatory function and the mechanism of miR-15a on the ischemic brain injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in neurons of rats. The OGD/R model was established with the cortical neurons separated from rats. After transfection with miR-15a mimic negative control (NC), miR-15a mimic, miR-15a inhibitor NC and miR-15a inhibitor, the OGD/R-induced apoptosis were detected. Using bioinformatic softwares including TargetScan, miRanda, and miRWalk to predict the underlying targets of miR-15a, and the binding of miR-15a with brain-derived neurotrophic factor (BDNF) were validated with double-fluorescein reporter assay system. The expression levels of BDNF mRNA and protein were detected with qRT-PCR and western blot. The effect of miR-15a on PI3K/AKT pathway in neurons submitted to OGD/R was also investigated. The findings showed that miR-15a may mediate the apoptosis of neurons submitted to OGD/R, and lower expression of Bcl-2 and higher expression of Bax and cleaved caspase-3 were observed. BDNF was screened as the candidate target, and the direct binding of miR-15a with 3'-UTR of BDNF were verified. Further research showed that miR-15a downregulated the expression of BDNF mRNA and protein, thus exerted negative regulatory effect on the OGD/R injury. PI3K/AKT pathway may be related to the regulatory effect of miR-15a. Our findings contribute to uncovering novel pathogenesis for ischemic brain injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucosa/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Oxígeno/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Biología Computacional , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA