Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mediators Inflamm ; 2018: 6265746, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670466

RESUMEN

Our previous studies showed that γδ T cells provided immune protection against Chlamydial muridarum (Cm), an obligate intracellular strain of chlamydia trachomatis, lung infection by producing abundant IL-17. In this study, we investigated the proliferation and activation of lung γδ T cell subsets, specifically the IL-17 and IFNγ production by them following Cm lung infection. Our results found that five γδ T cell subsets, Vγ1+ T, Vγ2+ T, Vγ4+ T, Vγ5+ T, and Vγ6+ T, expressed in lungs of naïve mice, while Cm lung infection mainly induced the proliferation and activation of Vγ4+ T cells at day 3 p.i., following Vγ1+ T cells at day 7 p.i. Cytokine detection showed that Cm lung infection induced IFNγ secretion firstly by Vγ4+ T cells at very early stage (day 3) and changed to Vγ1+ T cells at midstage (day 7). Furthermore, Vγ4+ T cell is the main γδ T cell subset that secretes IL-17 at the very early stage of Cm lung infection and Vγ1+ T cell did not secrete IL-17 during the infection. These findings provide in vivo evidence that Vγ4+T cells are the major IL-17 and IFNγ-producing γδ T cell subsets at the early period of Cm lung infection.


Asunto(s)
Citocinas/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Linfocitos T/metabolismo , Animales , Pulmón/metabolismo , Pulmón/patología , Ratones
2.
Huan Jing Ke Xue ; 44(7): 4119-4129, 2023 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-37438309

RESUMEN

In order to explore the effect of combining straw and desulphurized gypsum on improving coastal saline-alkali soil, taking the alkaline saline soil in the Yellow River Delta as the research object, six treatments including the control (CK), desulphurized gypsum (DG), medium straw amount (MS), desulphurized gypsum+low straw amount (DGLS), desulphurized gypsum+medium straw amount (DGMS), and desulphurized gypsum+high straw amount (DGHS) were set up through a field location experiment. Combined with the aggregate classification method, the changes in bulk density, total porosity, pH, soluble salt content, microbial biomass carbon, dissolved organic carbon, new carbon, and aggregate organic carbon of coastal saline alkali soil under different treatments were compared. The results showed that the MS and DGHS treatments significantly reduced soil bulk density and increased soil total porosity, water content, and average weight diameter. The pH and exchange sodium percentage decreased significantly under all treatments, and there was no significant difference. DG treatment significantly reduced the soil sodium adsorption ratio. Compared with that in the MS treatment, the soil sodium adsorption ratio of DGLS, DGMS, and DGHS showed a further decreasing trend, with a decrease range of 57%-66%. Compared with MS, soil soluble Na+ decreased by 27.92%, 32.23%, and 20.15% under the DGLS, DGMS, and DGHS treatments, whereas the soil soluble Ca2+ and SO42- contents increased significantly. Compared with that in CK, all treatments could significantly reduce Cl- content, and there was no significant difference among all treatments. Compared with that in MS, microbial biomass carbon and dissolved organic carbon were significantly increased by 113% and 147% by DGMS and 22.81% and 28.24% by DGHS, respectively. The new carbon formation of DGLS, DGMS, and DGHS was 67%, 114%, and 175% higher than that of MS, respectively. The average size proportion of fine aggregates treated by DGLS, DGMS, and DGHS was 29.12% higher than that treated by MS. Straw returning and application of desulfurized gypsum increased the organic carbon content of coarse aggregates and fine aggregates in salinized soil. The average value of new carbon formation in coarse aggregates and fine aggregates treated by DGMS and DGHS was 233% and 142% higher than that treated by MS, respectively. Desulphurized gypsum applied to soil did not lead to soil heavy metal pollution, and the soil heavy metal content of different treatments was lower than the secondary standard of the soil environmental quality standard. These results can provide scientific basis for the improvement and utilization of coastal saline-alkali soil and the comprehensive utilization of industrial and agricultural wastes in the Yellow River Delta.

3.
Hortic Res ; 6: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30603096

RESUMEN

Deciphering the genetic control of grape berry traits is crucial for optimizing yield, fruit quality, and consumer acceptability. In this study, an association panel of 179 grape genotypes comprising a mixture of ancient cultivars, landraces, and modern varieties collected worldwide were genotyped with genotyping-by-sequencing using a genome-wide association approach based on 32,311 single-nucleotide polymorphism (SNP) markers. Genome-wide efficient mixed-model association was selected as the optimal statistical model based on the results of known control loci of grape berry color traits. Many of the associated SNPs identified in this study were in accordance with the previous QTL analyses using biparental mapping. The grape skin color locus was found to be associated with a mybA transcription factor on chromosome 2. Two strong and distinct association signals associated with berry development periods were found on chromosome 16. Most candidate genes of the interval were highlighted as receptor-like protein kinase. For berry weight, significant association loci were identified on chromosome 18, as previously known, and on chromosome 19 and chromosome 17, as newly mapped. Berry flesh texture was newly located on chromosome 16; candidate genes in the interval were related to calcium. Berry flavor was determined on chromosome 5. Genomic regions were further investigated to reveal candidate genes. In this work, we identified interesting genetic determinants of grape berry-related traits. The identification of the markers closely associated with these berry traits may be useful for grape molecular breeding.

4.
Plant Physiol Biochem ; 118: 634-642, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28806719

RESUMEN

Enzymes and non-enzyme elements related to the metabolism of reactive oxygen species (ROS), such as catalase (CAT), superoxide dismutase (SOD), ascorbic acid (AsA), glutathione (GSH), NADPH oxidase (NOX), hydrogen peroxide (H2O2), superoxide anion (O2-), lipoxygenase (LOX) and malondialdehyde (MDA), were measured in 'Kyoho' and its early ripening bud mutant 'Fengzao' to compare ROS level changes and investigate the potential roles of ROS in grape berry development and the ripening process. In addition, the anthocyanin and sugar contents as well as berry diameter were also investigated at different berry development stages. The results showed that the H2O2 content and LOX activity exhibited obviously different trends between 'Fengzao' and 'Kyoho' during the berry development stages. Before berry softening, the SOD activity, LOX activity and H2O2 content were significant lower in 'Fengzao' than in 'Kyoho', but there were no significant differences in the production rate of O2-, ROS scavengers (CAT, AsA, GSH) and MDA content between them, which indicated that the higher oxidation status in 'Fengzao'. It may promote the faster development of 'Fengzao' berry than 'Kyoho' before berry softening (EL31-33). The significant higher LOX and CAT activities at EL-34, as well as significant higher LOX activity and H2O2 content at EL-35 in 'Fengzao' than in 'Kyoho' indicated H2O2 was acted as the appropriate oxidative stress factor and the signal molecule to further accelerate the berry ripening of 'Fengzao'. The increasing O2- and H2O2 after EL-35 in 'Fengzao' further promoted the ripening process. Furthermore, after the spraying of 300 µmol/L H2O2 solution on 'Kyoho' at EL-31 stage, the berries matured 15 days earlier than the untreated. Evidence in this study indicated that the overall oxidation status (ROS levels) in 'Fengzao' is higher than in 'Kyoho' and H2O2 could promote the early ripening of 'Kyoho' berry.


Asunto(s)
Antioxidantes/metabolismo , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Mutación , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Frutas/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA