Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107694, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159816

RESUMEN

The canonical Wnt signaling pathway plays crucial roles in cell fate decisions as well as in pathogenesis of various diseases. Previously, we reported Caprin-2 as a new regulator of canonical Wnt signaling through a mechanism of facilitating LRP5/6 phosphorylation. Here, we resolved the crystal structure of the N-terminal homologous region 1 (HR1) domain of human Caprin-2 (hCap2_HR1). HR1 domain is so far only observed in Caprin-2 and its homologous protein Caprin-1, and the function of this domain remains largely mysterious. Here, the structure showed that hCap2_HR1 forms a homo-dimer and exhibits an overall structure roughly resembling the appearance of a pair of scissors. Moreover, we found that residues R200 and R201, which located at a basic cluster within the N-terminal "blades" region, are critical for Caprin-2's localization to the plasma membrane. In line with this, mutations targeting these two residues decrease Caprin-2's activity in the canonical Wnt signaling. Overall, we characterized a previously unknown "scissors"-like structure of the full-length HR1 domain, and revealed its function in mediating Caprin-2's localization to the plasma membrane.

2.
Toxicol Appl Pharmacol ; 414: 115408, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476677

RESUMEN

This study proposed to investigate the function of miR-19a/ACSL axis in hypoxia/reoxygenation (H/R)-induced myocardial injury and determine whether metformin exerts its protective effect via miR-19a/ACSL axis. Firstly, bioinformatics analysis of data from Gene Expression Omnibus (GEO) database indicated that miR-19a was downregulated in patients with myocardial infarction (MI) compared to that in control group. H/R model was constructed with AC16 cells in vitro. qRT-PCR assay revealed that miR-19a was downregulated in H/R-treated AC16 cells. Then, CCK-8 assay demonstrated that upregulation of miR-19a significantly alleviated H/R-induced decline of cell viability. Moreover, bioinformatics prediction, western blotting and dual-luciferase reporter assays were performed to check the target genes of miR-19a, and ACSL1 was determined as a downstream target gene of miR-19a. Besides, the analysis based on Comparative Toxicogenomics Database (CTD) suggested that metformin targeting ACSL1 can be used as a potential drug for further research. Biological function experiments in vitro revealed that H/R markedly declined the viability and elevated the apoptosis of AC16 cells, while metformin can significantly mitigate these effects. Furthermore, overexpression of miR-19a significantly strengthened the beneficial effect of metformin on H/R-induced AC16 cells injury, which can be reversed by upregulation of ACSL1. In conclusion, metformin can alleviate H/R-induced cells injury via regulating miR-19a/ACSL axis, which lays a foundation for identifying novel targets for myocardial I/R injury therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metformina/farmacología , MicroARNs/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudios de Casos y Controles , Hipoxia de la Célula , Línea Celular , Bases de Datos Genéticas , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal
3.
J Recept Signal Transduct Res ; 40(4): 374-382, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32156191

RESUMEN

Aortic aneurysm formation is associated with endothelial cells dysfunction through an undefined mechanism. Macrophage stimulating 1 (Mst1) and NF-κB signaling pathway have been found to be related to inflammation response in endothelial cell damage. The goal of our study is to explore the role of Mst1 in regulating endothelial cell viability with a focus on NF-κB signaling pathway and inflammation response. Endothelial cell viability and death were determined via immunofluorescence and ELISA. Agonist of NF-κB signaling pathway and siRNA against Mst1 were used. The results in our study demonstrated that Mst1 transcription and expression were significantly elevated after exposure to oxidative stress in endothelial cells. Once loss of Mst1 through transfection of siRNA (si-Mst1), endothelial cell viability and survival rate were rapidly increased in response to oxidative stress. In addition, we also found that Mst1 controlled inflammation response and mitochondrial function in endothelial cells. Re-activation of NF-κB signaling pathway was followed by an activation of inflammation response and mitochondrial dysfunction, as evidenced by increased expression of inflammation factors and decreased ATP synthesis. Altogether, our results identify Mst1 as the primary factors responsible for endothelial cells dysfunction in aneurysms formation through inducing inflammation response, endothelial apoptosis, and NF-κB signaling pathway activation.


Asunto(s)
Aneurisma de la Aorta/genética , Inflamación/genética , Estrés Oxidativo/genética , Proteínas Serina-Treonina Quinasas/genética , Adenosina Trifosfato/genética , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Apoptosis/genética , Supervivencia Celular/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias/metabolismo , FN-kappa B/genética , Transducción de Señal/genética
4.
J Sci Food Agric ; 100(14): 5102-5110, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29691867

RESUMEN

Over the last 27 years (1990-2017), based on the revolutionary progresses of basic nutrition research, novel methods and techniques have been developed which bring a profound technological revolution to pig production from free-range system to intensive farming all over the world. Basic theoretical innovations and feed production studies have provided vital advancements in pig nutrition by developing formula feed, utilizing balanced diets, determining feed energy value, dividing pig physiological stages, enhancing gut health, and improving feed processing technique. Formula feed is the primary contributor of the rise of the mechanized farming industry, and meets comprehensive nutritional needs of the pig. The focuses of the development of a balanced diet by optimizing nutrient levels are the amino acids balance, the balance between amino acids and energy, the balance between calcium and phosphorus. Multiple-site-production and targeted feeding program have been applied extensively. Early weaning of piglets improves production efficiency, but piglets that have not yet fully developed their intestine are prone to diarrhea. Therefore, intestinal health has received special attention in recent years. Feed processing technologies, such as granulation, puffing, fermentation and enzymatic hydrolysis, can improve the utilization of feed nutrients and reduce production cost. However, increasing a sow's potential for production, seeking alternatives to antibiotics, reducing drug treatment in piglets, developing functional additives and improving meat quality remain future challenges. Herein, we outline the important progresses of pig nutrition in the past 27 years, which will shed light on the basic nutrition rules of pig production, and help to push forward its future development. © 2018 Society of Chemical Industry.


Asunto(s)
Alimentación Animal/análisis , Ciencias de la Nutrición Animal/historia , Porcinos/metabolismo , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Historia del Siglo XX , Historia del Siglo XXI , Carne/análisis , Minerales/metabolismo , Porcinos/crecimiento & desarrollo
5.
PLoS Genet ; 12(8): e1006263, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27541584

RESUMEN

Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.


Asunto(s)
Arabidopsis/genética , MicroARNs/genética , Desarrollo de la Planta/genética , Proteínas/genética , Arabidopsis/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/biosíntesis , Familia de Multigenes/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Proteínas/metabolismo
6.
Sensors (Basel) ; 19(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557981

RESUMEN

In this paper, a wavenumber-searching method based on time-domain compensation is proposed to obtain the wavenumber of the Lamb wave array received signal. In the proposed method, the time-domain sampling signal of the linear piezoelectric transducer (PZT) sensor array is converted into a spatial sampling signal using the searching wavenumber. The two-dimensional time-spatial-domain Lamb wave received signal of the linear PZT sensor array is then converted into a one-dimensional synthesized spatial sampling signal. Further, the sum of squared errors between the synthesized spatial sampling signal and its Morlet wavelet fitting signal is calculated at each searching wavenumber. Finally, the wavenumber of the Lamb wave array received signal is obtained as the searching wavenumber corresponding to the minimum error. This method was validated on a 2024-T3 aluminum alloy. The validation results showed that the proposed method can successfully obtain the wavenumber of the Lamb wave array received signal, whose spatial sampling rate does not satisfy the Nyquist sampling theorem; the wavenumber error does not exceed 2.2 rad/m. Damage localization based on the proposed method was also validated on a carbon fiber composite laminate plate, and the maximum damage localization error was no more than 2.11 cm.

7.
Development ; 142(23): 4129-38, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26493403

RESUMEN

The Arabidopsis thaliana hypocotyl is a robust system for studying the interplay of light and plant hormones, such as brassinosteroids (BRs), in the regulation of plant growth and development. Since BRs cannot be transported between plant tissues, their cellular levels must be appropriate for given developmental fates. BR homeostasis is maintained in part by transcriptional feedback regulation loops that control the expression of key metabolic enzymes, including the BR-inactivating enzymes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Here, we find that the NAC transcription factor (TF) ATAF2 binds the promoters of BAS1 and SOB7 to suppress their expression. ATAF2 restricts the tissue-specific expression of BAS1 and SOB7 in planta. ATAF2 loss- and gain-of-function seedlings have opposite BR-response phenotypes for hypocotyl elongation. ATAF2 modulates hypocotyl growth in a light-dependent manner, with the photoreceptor phytochrome A playing a major role. The photomorphogenic phenotypes of ATAF2 loss- and gain-of-function seedlings are suppressed by treatment with the BR biosynthesis inhibitor brassinazole. Moreover, the disruption of BAS1 and SOB7 abolishes the short-hypocotyl phenotype of ATAF2 loss-of-function seedlings in low fluence rate white light, demonstrating an ATAF2-mediated connection between BR catabolism and photomorphogenesis. ATAF2 expression is suppressed by both BRs and light, which demonstrates the existence of an ATAF2-BAS1/SOB7-BR-ATAF2 feedback regulation loop, as well as a light-ATAF2-BAS1/SOB7-BR-photomorphogenesis pathway. ATAF2 also modulates root growth by regulating BR catabolism. As it is known to regulate plant defense and auxin biosynthesis, ATAF2 therefore acts as a central regulator of plant defense, hormone metabolism and light-mediated seedling development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas Represoras/metabolismo , Plantones/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Homeostasis , Hipocótilo/metabolismo , Fenotipo , Fotoquímica , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Plant Physiol ; 171(4): 2701-16, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27342309

RESUMEN

Developing seedlings are well equipped to alter their growth in response to external factors in order to maximize their chances of survival. SUPPRESSOR OF PHYTOCHROME B4-#3 (SOB3) and other members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family of transcription factors modulate the development of Arabidopsis (Arabidopsis thaliana) by repressing hypocotyl elongation in young seedlings growing in light. However, the molecular mechanism behind how AHLs influence seedling development is largely unknown. We have identified genes associated with auxin-mediated hypocotyl elongation as downstream targets of SOB3. We found that YUCCA8 (YUC8) as well as members of the SMALL AUXIN UP-REGULATED RNA19 (SAUR19) subfamily were down-regulated in the short-hypocotyl, gain-of-function SOB3-D mutant and up-regulated in the dominant-negative, tall-hypocotyl sob3-6 mutant. SOB3-D and sob3-6 hypocotyls also exhibited altered sensitivity to the polar auxin transport inhibitor N-1-napthylphthalamic acid, suggesting a critical connection between auxin and the modulation of seedling elongation by SOB3 Finally, we found that overexpression of GREEN FLUORESCENT PROTEIN-SAUR19 in the SOB3-D line partially rescued defects in hypocotyl elongation, and SOB3 bound directly to the promoters of YUC8 and SAUR19 subfamily members. Taken together, these data indicate that SOB3 modulates hypocotyl elongation in young seedlings by directly repressing the transcription of genes associated with auxin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Genes de Plantas , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/genética , Modelos Biológicos , Mutación/genética , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/genética , Transducción de Señal/genética , Temperatura
9.
J Org Chem ; 82(18): 9410-9417, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809564

RESUMEN

A chemoselective N-arylation reaction of 2-aminopyridine derivatives with arynes in good to excellent yields has been described. The N-arylation products could be further applied to the facile construction of benzoisoquinuclidines and isoquinuclidines as well as pyrido[1,2-a]benzimidazoles.

10.
Biochim Biophys Acta ; 1849(6): 583-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25779641

RESUMEN

During mammalian development, some methylated cytosines (5mC) in CG dinucleotides are iteratively oxidized by TET dioxygenases to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). The effect of these cytosine oxidative products on the sequence-specific DNA binding of transcription factors is being actively investigated. Here, we used the electrophoretic mobility shift assay (EMSA) to examine C/EBPα and C/EBPß homodimers binding to all 25 chemical forms of a CG dinucleotide for two DNA sequences: the canonical C/EBP 8-mer TTGC|GCAA and the chimeric C/EBP|CRE 8-mer TTGC|GTCA. 5hmC in the CG dinucleotide in the C/EBP|CRE motif 8-mer TGAC|GCAA inhibits binding of C/EBPß but not C/EBPα. Binding was increased by 5mC, 5fC and 5caC. Circular dichroism monitored thermal denaturations for C/EBPß bound to the C/EBP|CRE motif confirmed the EMSA. The structural differences between C/EBPα and C/EBPß that may account for the difference in binding 5hmC in the 8-mer TGAC|GCAA are explored.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Metilación de ADN/genética , Factores de Transcripción/genética , 5-Metilcitosina/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/química , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/química , Cristalografía por Rayos X , Citosina/análogos & derivados , Citosina/metabolismo , Nucleótidos de Citosina/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario/genética , Motivos de Nucleótidos/genética , Factores de Transcripción/metabolismo
11.
Genome Res ; 23(6): 988-97, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23590861

RESUMEN

To evaluate the effect of CG methylation on DNA binding of sequence-specific B-ZIP transcription factors (TFs) in a high-throughput manner, we enzymatically methylated the cytosine in the CG dinucleotide on protein binding microarrays. Two Agilent DNA array designs were used. One contained 40,000 features using de Bruijn sequences where each 8-mer occurs 32 times in various positions in the DNA sequence. The second contained 180,000 features with each CG containing 8-mer occurring three times. The first design was better for identification of binding motifs, while the second was better for quantification. Using this novel technology, we show that CG methylation enhanced binding for CEBPA and CEBPB and inhibited binding for CREB, ATF4, JUN, JUND, CEBPD, and CEBPG. The CEBPB|ATF4 heterodimer bound a novel motif CGAT|GCAA 10-fold better when methylated. The electrophoretic mobility shift assay (EMSA) confirmed these results. CEBPB ChIP-seq data using primary female mouse dermal fibroblasts with 50× methylome coverage for each strand indicate that the methylated sequences well-bound on the arrays are also bound in vivo. CEBPB bound 39% of the methylated canonical 10-mers ATTGC|GCAAT in the mouse genome. After ATF4 protein induction by thapsigargin which results in ER stress, CEBPB binds methylated CGAT|GCAA in vivo, recapitulating what was observed on the arrays. This methodology can be used to identify new methylated DNA sequences preferentially bound by TFs, which may be functional in vivo.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Islas de CpG , Metilación de ADN , Factor de Transcripción Activador 4/química , Animales , Secuencia de Bases , Sitios de Unión , Proteína beta Potenciadora de Unión a CCAAT/química , Femenino , Fibroblastos , Ratones , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Tapsigargina/inmunología , Factores de Transcripción/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(48): E4688-97, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218605

RESUMEN

The Arabidopsis thaliana genome encodes 29 AT-hook motif containing nuclear localized (AHL) genes, which evolved into two phylogenic clades. The AHL proteins contain one or two AT-hook motif(s) and one plant and prokaryote conserved (PPC)/domain of unknown function #296 (DUF296) domain. Seedlings lacking both SOB3/AHL29 and ESC/AHL27 confer a subtle long-hypocotyl phenotype compared with the WT or either single-null mutant. In contrast, the missense allele sob3-6 confers a dramatic long-hypocotyl phenotype in the light. In this study, we examined the dominant-negative feature of sob3-6 and found that it encodes a protein with a disrupted AT-hook motif that abolishes binding to AT-rich DNA. A loss-of-function approach demonstrated different, yet redundant, contributions of additional AHL genes in suppressing hypocotyl elongation in the light. We showed that AHL proteins interact with each other and themselves via the PPC/DUF296 domain. AHLs also share interactions with other nuclear proteins, such as transcription factors, suggesting that these interactions also contribute to the functional redundancy within this gene family. The coordinated action of AHLs requires an AT-hook motif capable of binding AT-rich DNA, as well as a PPC/DUF296 domain containing a conserved Gly-Arg-Phe-Glu-Ile-Leu region. Alteration of this region abolished SOB3/AHL29's physical interaction with transcription factors and resulted in a dominant-negative allele in planta that was phenotypically similar to sob3-6. We propose a molecular model where AHLs interact with each other and themselves, as well as other nuclear proteins, to form complexes which modulate plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Hipocótilo/crecimiento & desarrollo , Modelos Moleculares , Familia de Multigenes/genética , Complejos Multiproteicos/metabolismo , Conformación Proteica , Arabidopsis/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Prueba de Complementación Genética , Hipocótilo/metabolismo , Filogenia , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
13.
J Biol Chem ; 289(49): 34104-13, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25331957

RESUMEN

Previously, we have identified Caprin-2 as a new regulator in canonical Wnt signaling through a mechanism of facilitating LRP5/6 phosphorylation; moreover, we found that its C-terminal C1q-related domain (Cap2_CRD) is required for this process. Here, we determined the crystal structures of Cap2_CRD from human and zebrafish, which both associate as a homotrimer with calcium located at the symmetric center. Surprisingly, the calcium binding-deficient mutant exists as a more stable trimer than its wild-type counterpart. Further studies showed that this Caprin-2 mutant disabled in binding calcium maintains the activity of promoting LRP5/6 phosphorylation, whereas the mutations disrupting Cap2_CRD homotrimer did impair such activity. Together, our findings suggested that the C-terminal CRD domain of Caprin-2 forms a flexible homotrimer mediated by calcium and that such trimeric assembly is required for Caprin-2 to regulate canonical Wnt signaling.


Asunto(s)
Calcio/química , Proteínas de Ciclo Celular/química , Complemento C1q/química , Animales , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complemento C1q/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vía de Señalización Wnt , Pez Cebra
15.
Biochem Biophys Res Commun ; 449(2): 248-55, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24835951

RESUMEN

Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citosina/análogos & derivados , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dicroismo Circular , Citosina/química , Citosina/metabolismo , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Elementos E-Box , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína
16.
BMC Plant Biol ; 14: 266, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25311531

RESUMEN

BACKGROUND: Members of the ancient land-plant-specific transcription factor AT-Hook Motif Nuclear Localized (AHL) gene family regulate various biological processes. However, the relationships among the AHL genes, as well as their evolutionary history, still remain unexplored. RESULTS: We analyzed over 500 AHL genes from 19 land plant species, ranging from the early diverging Physcomitrella patens and Selaginella to a variety of monocot and dicot flowering plants. We classified the AHL proteins into three types (Type-I/-II/-III) based on the number and composition of their functional domains, the AT-hook motif(s) and PPC domain. We further inferred their phylogenies via Bayesian inference analysis and predicted gene gain/loss events throughout their diversification. Our analyses suggested that the AHL gene family emerged in embryophytes and further evolved into two distinct clades, with Type-I AHLs forming one clade (Clade-A), and the other two types together diversifying in another (Clade-B). The two AHL clades likely diverged before the separation of Physcomitrella patens from the vascular plant lineage. In angiosperms, Clade-A AHLs expanded into 5 subfamilies; while, the ones in Clade-B expanded into 4 subfamilies. Examination of their expression patterns suggests that the AHLs within each clade share similar expression patterns with each other; however, AHLs in one monophyletic clade exhibit distinct expression patterns from the ones in the other clade. Over-expression of a Glycine max AHL PPC domain in Arabidopsis thaliana recapitulates the phenotype observed when over-expressing its Arabidopsis thaliana counterpart. This result suggests that the AHL genes from different land plant species may share conserved functions in regulating plant growth and development. Our study further suggests that such functional conservation may be due to conserved physical interactions among the PPC domains of AHL proteins. CONCLUSIONS: Our analyses reveal a possible evolutionary scenario for the AHL gene family in land plants, which will facilitate the design of new studies probing their biological functions. Manipulating the AHL genes has been suggested to have tremendous effects in agriculture through increased seedling establishment, enhanced plant biomass and improved plant immunity. The information gleaned from this study, in turn, has the potential to be utilized to further improve crop production.


Asunto(s)
Secuencias AT-Hook/genética , Embryophyta/genética , Secuencia de Aminoácidos , Secuencia de Bases , Evolución Biológica , Biomasa , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Embryophyta/crecimiento & desarrollo , Duplicación de Gen , Expresión Génica , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Selaginellaceae/genética , Selaginellaceae/crecimiento & desarrollo , Análisis de Secuencia de ADN
17.
Mol Neurobiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046701

RESUMEN

Pyroptosis has been implicated in many pathologic processes, including endoplasmic reticulum stress (ERS). However, the underlying mechanisms and molecular targets of ERS affecting pyroptosis still need further exploration. We obtained gene sets associated with ERS and pyroptosis, and the common genes were regarded as crosstalk genes linking ERS and pyroptosis. Protein-protein interaction (PPI) network was constructed, and the hub genes were obtained via Cytoscape. Moreover, to validate the efficacy of the therapeutic target, neurological tests, brain water content measurements, Nissl staining, Western blot, ELISA, TUNEL analyses, and transmission electron microscopy were performed in a mouse model. A total of 13 crosstalk genes were acquired, and enrichment analysis revealed that these genes were mainly enriched in stress-associated cellular processes and pathways, including KEAP1-NFE2L2 pathway. The hub gene, NFE2L2, was identified by Cytoscape, and tert-butylhydroquinone (tBHQ) was screened as candidate drug to activate NFE2L2. Western blot and ELISA results showed that activation of NFE2L2 could attenuate the expression of ERS and pyroptosis-related proteins by promoting nuclear translocation of Nrf2 (encoded by NFE2L2). Pathological evaluation by Nissl staining and TUNEL assay reflected a similar trend. Furthermore, activation of NFE2L2 ameliorated neurological deficits and reduced brain edema. In conclusion, our bioinformatic analysis results established the theoretical foundation of NFE2L2 as a promising therapeutic target. Moreover, in the mouse model, tBHQ pretreatment further confirmed the effectiveness of this target. We hypothesized NFE2L2 may play a key role in the progression of ERS-mediated pyroptosis. These findings may inspire new ideas to treat neurological disorders.

18.
Front Neurol ; 15: 1341342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405399

RESUMEN

Background: Traumatic brain injury (TBI) is a serious hazard to human health. Evidence has accumulated that pyroptosis plays an important role in brain trauma. The aim of this study is to screen potential key molecules between TBI and pyroptosis, and further explore their relationships with disease severity and cytokines. Methods: To acquire differentially expressed genes (DEGs) before and after brain injury, the GSE89866 dataset was downloaded from the Gene Expression Omnibus (GEO) database. Meanwhile, pyroptosis-related genes were obtained from the GeneCards database, and the intersected genes were identified as differentially expressed pyroptosis-related genes (DEPGs). Moreover, the hub genes were screened via four algorithms (namely Maximum Clique Centrality, Edge Percolated Component, BottleNeck and EcCentricity) in Cytoscape software. Blood levels of Nrf2 were measured by ELISA using a commercially available kit. Finally, we further investigated the correlation between Nrf2 levels and medical indicators in TBI such as clinical characteristics, inflammatory cytokines, and severity. Results: Altogether, we found 1,795 DEGs in GSE89866 and 98 pyroptosis-related genes in the GeneCards database. Subsequently, four hub genes were obtained, and NFE2L2 was adopted for further clinical study. By using Kruskal-Wallis test and Spearman correlation test, we found that the serum Nrf2 levels in severe TBI patients were negatively correlated with GCS scores. On the contrary, there was a positive correlation between serum Nrf2 levels and pupil parameters, Helsinki CT scores, IL-1 ß and IL-18. Conclusions: In summary, bioinformatic analyses showed NFE2L2 plays a significant role in the pathology of TBI. The clinical research indicated the increase in serum Nrf2 levels was closely related to the severity of trauma and cytokines. We speculate that serum Nrf2 may serve as a promising biochemical marker for the assessment of TBI in clinical practice.

19.
Front Vet Sci ; 11: 1424855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974335

RESUMEN

Probiotics are a group of active microorganisms that form colonies within the body and alter the composition of the flora in a specific area to provide benefits to the host. In this study, a total of 96 Duroc × Landrace × Yorkshire weaned piglets with an initial body weight (BW) of 8.56 ± 0.53 kg were employed in a randomized complete block design for a 28-day experiment. Pigs were randomly divided into two treatment groups: the control group (CON) and the complex probiotic group (CON + 0.2% probiotics), respectively. The study found that through the 28-day experiment, the average daily gain (ADG) of the complex probiotic group was significantly higher than that of the CON (p < 0.05). However, compared with the CON, the feed conversion efficiency significantly decreased on days 0-14 (p < 0.05). The addition of dietary complex probiotic significantly increased the villus height (VH) of duodenum and ileum, acetate, propionate, butyrate, and total short-chain fatty acids (SCFAs) in feces, and decreased fecal methyl mercaptans, acetic acid, and CO2 (p < 0.05). It concluded that feeding weaned piglets 0.2% complex probiotic increased the VH of duodenum and ileum, as well as changed the content of SCFAs in feces. This ultimately led to an increase in ADG.

20.
Animals (Basel) ; 14(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731340

RESUMEN

Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA